BGP-15 prevents the death of neurons in a mouse model of familial dysautonomia

Authors

Sarah B. Ohlen, Magdalena L. Russell, Michael J. Brownstein, Frances Lefcort

Publication

Proceedings of the National Academy of Sciences of the United States of America

Abstract

Hereditary sensory and autonomic neuropathy type III, or familial dysautonomia [FD; Online Mendelian Inheritance in Man (OMIM) 223900], affects the development and long-term viability of neurons in the peripheral nervous system (PNS) and retina. FD is caused by a point mutation in the gene IKBKAP/ELP1 that results in a tissue-specific reduction of the IKAP/ELP1 protein, a subunit of the Elongator complex. Hallmarks of the disease include vasomotor and cardiovascular instability and diminished pain and temperature sensation caused by reductions in sensory and autonomic neurons. It has been suggested but not demonstrated that mitochondrial function may be abnormal in FD. We previously generated an Ikbkap/Elp1 conditional-knockout mouse model that recapitulates the selective death of sensory (dorsal root ganglia) and autonomic neurons observed in FD. We now show that in these mice neuronal mitochondria have abnormal membrane potentials, produce elevated levels of reactive oxygen species, are fragmented, and do not aggregate normally at axonal branch points. The small hydroxylamine compound BGP-15 improved mitochondrial function, protecting neurons from dying in vitro and in vivo, and promoted cardiac innervation in vivo. Given that impairment of mitochondrial function is a common pathological component of neurodegenerative diseases such as amyotrophic lateral sclerosis and Alzheimer's, Parkinson's, and Huntington's diseases, our findings identify a therapeutic approach that may have efficacy in multiple degenerative conditions.

Links

 

How is this information collected?

This collection of Montana State authored publications is collected by the Library to highlight the achievements of Montana State researchers and more fully understand the research output of the University. They use a number of resources to pull together as complete a list as possible and understand that there may be publications that are missed. If you note the omission of a current publication or want to know more about the collection and display of this information email Leila Sterman.