Batalin–Vilkovisky quantization and the algebraic index


Ryan E. Grady, Qin Li, Si Li


Advances in Mathematics


Into a geometric setting, we import the physical interpretation of index theorems via semi-classical analysis in topological quantum field theory. We develop a direct relationship between Fedosov's deformation quantization of a symplectic manifold X and the Batalin–Vilkovisky (BV) quantization of a one-dimensional sigma model with target X. This model is a quantum field theory of AKSZ type and is quantized rigorously using Costello's homotopic theory of effective renormalization. We show that Fedosov's Abelian connections on the Weyl bundle produce solutions to the effective quantum master equation. Moreover, BV integration produces a natural trace map on the deformation quantized algebra. This formulation allows us to exploit a (rigorous) localization argument in quantum field theory to deduce the algebraic index theorem via semi-classical analysis, i.e., one-loop Feynman diagram computations.



How is this information collected?

This collection of Montana State authored publications is collected by the Library to highlight the achievements of Montana State researchers and more fully understand the research output of the University. They use a number of resources to pull together as complete a list as possible and understand that there may be publications that are missed. If you note the omission of a current publication or want to know more about the collection and display of this information email Leila Sterman.