Ultrafast Excited-State Deactivation of the Bacterial Pigment Violacein

Authors

Ashley A. Beckstead, Yuyuan Zhang, Jonathan K. Hilmer, Heidi J. Smith, Emily Bermel, Christine M. Foreman, Bern Kohler

Publication

Journal of Physical Chemistry B

Abstract

The photophysical properties of the natural pigment violacein extracted from an Antarctic organism adapted to high exposure levels of UV radiation were measured in a combined steady-state and time-resolved spectroscopic study for the first time. In the low-viscosity solvents methanol and acetone, violacein exhibits low fluorescence quantum yields on the order of 1 x 10(-4), and femtosecond transient absorption measurements reveal excited-state lifetimes of 3.2 +/- 0.2 and 4.6 +/- 0.2 ps in methanol and acetone, respectively. As solvent viscosity is increased, both the fluorescence quantum yield and excited-state lifetime of this intensely colored pigment increase dramatically, and stimulated emission decays 30-fold more slowly in glycerol than in methanol at room temperature. Excited-state deactivation is suggested to occur via a molecular-rotor mechanism in which torsion interring bond leads to a conical intersection with the ground state.

Links

 

How is this information collected?

This collection of Montana State authored publications is collected by the Library to highlight the achievements of Montana State researchers and more fully understand the research output of the University. They use a number of resources to pull together as complete a list as possible and understand that there may be publications that are missed. If you note the omission of a current publication or want to know more about the collection and display of this information email Leila Sterman.