Functional N-Formyl Peptide Receptor 2 (FPR2) Antagonists Based on Ureidopropanamide Scaffold Have Potential to Protect Against Inflammation-associated Oxidative Stress


Madia Letizia Stama, Enza Lacivita, Liliya N. Kirpotina, Mauro Niso, Roberto Perrone, Igor A. Schepetkin, Mark T. Quinn, Marcello Leopoldo




Formyl peptide receptor-2 (FPR2) is a G protein-coupled receptor belonging to the N-formyl peptide receptor (FPR) family that plays critical roles in peripheral and brain inflammatory responses. FPR2 has been proposed as a target for the development of drugs that could facilitate the resolution of chronic inflammatory reactions by enhancing endogenous anti-inflammation systems. Starting from the structure of the FPR2 agonists (R)- and (S)-4 and 2, we designed a new series of ureidopropanamide derivatives with the goal of converting functional activity from agonism to antagonism and to develop new FPR2 antagonists. Although none of the compounds behaved as antagonist, some of the compounds were able to induce receptor desensitization, thus functionally behaving as antagonists. Evaluation of these compounds in an in vitro model of neuroinflammation showed that they reduced reactive oxygen species (ROS) production in mouse microglial N9 cells after stimulation with lipopolysaccharide (LPS). These FPR2 ligands may protect cells from damage due to inflammation-associated oxidative stress.



How is this information collected?

This collection of Montana State authored publications is collected by the Library to highlight the achievements of Montana State researchers and more fully understand the research output of the University. They use a number of resources to pull together as complete a list as possible and understand that there may be publications that are missed. If you note the omission of a current publication or want to know more about the collection and display of this information email Leila Sterman.