Sparse model selection via integral terms


Hayden Schaeffer, Scott G. McCalla


Physical Review E


Model selection and parameter estimation are important for the effective integration of experimental data, scientific theory, and precise simulations. In this work, we develop a learning approach for the selection and identification of a dynamical system directly from noisy data. The learning is performed by extracting a small subset of important features from an overdetermined set of possible features using a nonconvex sparse regression model. The sparse regression model is constructed to fit the noisy data to the trajectory of the dynamical system while using the smallest number of active terms. Computational experiments detail the model's stability, robustness to noise, and recovery accuracy. Examples include nonlinear equations, population dynamics, chaotic systems, and fast-slow systems.



How is this information collected?

This collection of Montana State authored publications is collected by the Library to highlight the achievements of Montana State researchers and more fully understand the research output of the University. They use a number of resources to pull together as complete a list as possible and understand that there may be publications that are missed. If you note the omission of a current publication or want to know more about the collection and display of this information email Leila Sterman.