Global metabolomic profiling of human synovial fluid for rheumatoid arthritis biomarkers

Authors

Alyssa K. Carlson, Racherl A. Rawle, Cameron W. Wallace, Erik Adams, Mark C. Greenwood, Brian Bothner, Ronald K. June

Publication

Clinical and Experimental Rheumatology

Abstract

OBJECTIVES: The objective of this study was to analyse the metabolomic profiles of rheumatoid arthritis synovial fluid to test the use of global metabolomics by liquid chromatography-mass spectrometry for clinical analysis of synovial fluid. METHODS: Metabolites were extracted from rheumatoid arthritis (n=3) and healthy (n=5) synovial fluid samples using 50:50 water: acetonitrile. Metabolite extracts were analysed in positive mode by normal phase liquid chromatography-mass spectrometry for global metabolomics. Statistical analyses included hierarchical clustering analysis, principal component analysis, Student's t-test, and volcano plot analysis. Metabolites were matched with known metabolite identities using METLIN and enriched for relevant pathways using IMPaLA. RESULTS: 1018 metabolites were detected by LC-MS analysis in synovial fluid from rheumatoid arthritis and healthy patients, with 162 metabolites identified as significantly different between diseased and control. Pathways upregulated with disease included ibuprofen metabolism, glucocorticoid and mineralocorticoid metabolism, alpha-linolenic acid metabolism, and steroid hormone biosynthesis. Pathways downregulated with disease included purine and pyrimidine metabolism, biological oxidations, arginine and proline metabolism, the citrulline-nitric oxide cycle, and glutathione metabolism. Receiver operating characteristic analysis identified 30 metabolites as putative rheumatoid arthritis biomarkers including various phospholipids, diol and its derivatives, arsonoacetate, oleananoic acid acetate, docosahexaenoic acid methyl ester, and linolenic acid and eicosatrienoic acid derivatives. CONCLUSIONS: This study supports the use of global metabolomic profiling by liquid chromatography-mass spectrometry for synovial fluid analysis to provide insight into the aetiology of disease.

Links

 

How is this information collected?

This collection of Montana State authored publications is collected by the Library to highlight the achievements of Montana State researchers and more fully understand the research output of the University. They use a number of resources to pull together as complete a list as possible and understand that there may be publications that are missed. If you note the omission of a current publication or want to know more about the collection and display of this information email Leila Sterman.