Chemoenzymatic Synthesis of Galectin Binding Glycopolymers

Authors

Jessica H. Ennist, Henry R. Termuehlen, Samuel P. Bernhard, Mackenzie S. Fricke, Mary J. Cloninger

Publication

Bioconjugate Chemistry

Abstract

Chemoenzymatic synthesis is an important strategy for the formation of glycopolymers. The use of a smaller number of traditional chemical steps and enzyme catalyzed reactions increases the yield of glycopolymer that can be produced by reducing the overall number of synthetic steps. In addition, chemoenzymatic routes are likely to be more accessible to those without a background in carbohydrate synthesis, making glycopolymers more available for studies across a broader range of scientists. Here, the enzymatic addition of galactose to N-acetylglucosamine functionalized glycodendrimers reduced the requisite number of synthetic steps for the full chemical synthesis of N-acetyl lactosamine (LacNAc) functionalized dendrimers to four steps. Unpurified cell lysate was used in the enzyme catalyzed glycosylation, and product glycodendrimers were readily purified by dialysis after enzymatic degradation of all protein components of the lysate in the crude reaction mixture. LacNAc functionalized dendrimers were used very effectively in homotypic cancer cellular aggregation assays and were found to either inhibit or enhance galectin-3 mediated cancer cellular aggregation, with differences in outcomes dependent on the generation of LacNAc functionalized dendrimers that were used.

Links

 

How is this information collected?

This collection of Montana State authored publications is collected by the Library to highlight the achievements of Montana State researchers and more fully understand the research output of the University. They use a number of resources to pull together as complete a list as possible and understand that there may be publications that are missed. If you note the omission of a current publication or want to know more about the collection and display of this information email Leila Sterman.