Wax Blends as Tunable Encapsulants for Soil-Degradable Electronics

Authors

Madhur Atreya, Gabrielle Marinick, Carol Baumbauer, Karan Vivek Dikshit, Shangshi Liu, Charlotte Bellerjeau, Jenna Nielson, Sara Khorchidian, Abigail Palmgren, Yongkun Sui, Richard Bardgett, David Baumbauer, Carson J. Bruns, Jason C. Neff, Ana Claudia Arias, Gregory Whiting

Publication

ACS Applied Electronic Materials

Abstract

Printed biodegradable electronics potentially enable the monitoring of various soil parameters at a high spatial density while minimizing cost and waste. A tunable degradable encapsulant is a critical component in a soil-degradable electronic device, as it acts to delay the ingress of water, microbes, and other agents responsible for degradation of underlying functional materials. Here, blends of beeswax and commercial soy wax are presented as tunable biodegradable encapsulant materials for transient soil sensors. Using differential scanning calorimetry, we first show that the blends of the two waxes have limited miscibility, which enables programming of degradation times. Laboratory degradation tests in soil revealed that the longevity of encapsulated devices can be controlled by the ratio of the component soy and beeswax, with up to 100 days with 100% beeswax and less than 10 days with the addition of 25% soy wax by mass. Thicker coatings of 1.6 mm of 10% soy wax in beeswax blends are shown to protect devices for 12 weeks. Additionally, melt-processed beeswax encapsulants are used as a simple method to delay the degradation of otherwise rapidly biodegradable materials, such as wooden stakes, that could be used to house soil-degradable electronic devices.

Links

 

How is this information collected?

This collection of Montana State authored publications is collected by the Library to highlight the achievements of Montana State researchers and more fully understand the research output of the University. They use a number of resources to pull together as complete a list as possible and understand that there may be publications that are missed. If you note the omission of a current publication or want to know more about the collection and display of this information email Leila Sterman.