Biology

Cell Biology and Neuroscience

Chemistry and Biochemistry

(CHEM rubric changed to CHMY rubric as of Fall 2009)

Computer Science

Earth Science

(ESCI changed to ERTH & GEOL changed to GEO as of Fall 2009)

Education

Electrical Engineering

Engineering

Health and Human Development

Land Resources and Environmental Sciences

Mathematics

Microbiology

Physics

Plant Sciences

  


Biology

BIOE 513 Terrestrial Ecology of Plains and Prairies
Credits:
1
Mode of Delivery: Online
Semester Offered: Summer
Instructor: Joe Bradshaw, MSSE and Ecology Department, MSU-Bozeman

Grassy areas – plains, prairies and meadows – rarely get the attention that lakes do, for example, or forests. But are grassy areas really that boring? What is the difference between the grass in your lawn and the bunchgrass in the field? Why are grasslands of any size important? How does land use change community composition?

In this course, we will take a closer look at one or two grass communities near your home or school and address these questions and others. You will complete six activities in this course:
1) Examine grass plants and learn some of their biology.
2) Locate and describe an important grassland in your area, a park, for example, explaining why it is special.
3) Locate and describe one or two study areas for your class project that ideally could be used for your own classroom activities.
4) Identify 8-10 major plants in your study areas and construct a dichotomous key to the plants that could be used by your students.
5) Quantitatively compare two features between or within your study areas, collecting data and analyzing them statistically (a sample statistics problem will be provided).
6) Write a short paper on your project, following scientific paper format. A “Question of the Week” will spark discussion among class members.

This course will get you outside, investigating areas that you find interesting and relevant to you and your students. It may be combined with BIOL 519, Biology of Riparian Zones and Wetlands, for observing similarities and differences between drier and wetter communities.

BIOE 519 Biology of Riparian Zones and Wetlands
Credits:
2
Mode of Delivery: Online
Semester Offered: Summer
Instructor: Joe Bradshaw, MSSE and Ecology Department, MSU-Bozeman

Building a home along the bank of a river (riparian zone) or draining a wet area (wetland) for “useful” purposes are commonplace activities throughout the country. But how do these activities change the functions of naturally occurring riparian zones and wetlands?

In this course, we will explore the structure and functions of these areas transitional between dry and aquatic communities, and their importance in the natural world. You will complete six activities in this course:
1) Read some on-line material about riparian zones and wetlands, and discuss the material.
2) Locate and describe an important riparian zone or wetland, a park for instance, in your area, explaining why it is special.
3) Locate and describe one or two study areas for your class project that ideally could be used for your own classroom activities.
4) Identify 8-10 major plants in your study areas and construct a dichotomous key to the plants that could be used by your students (or friends).
5) Quantitatively compare three features between or within your study areas, collecting data and analyzing them statistically (a sample statistics problem will be provided).
6) Write a short paper on your project, following scientific paper format. We will have a “Question of the Week” for sparking discussion among class members.

Science standards, federal and state, usually require field activities and ecological understanding. This course will get you outside, investigating areas that you find interesting and relevant to you and your students. This course can be combined with BIOL 513, Terrestrial Ecology of Plains and Prairies, for heightening awareness of the similarities and differences between grasslands and wetter areas.

BIOE 520 Understanding & Managing Animal Biodiversity in the Greater Yellowstone Ecosystem 
Credits:
2
Mode of Delivery: Campus
Semester Offered: Summer
Instructor: Dr. Jay Rotella, Department of Ecology, MSU-Bozeman

The Greater Yellowstone Ecosystem is a dramatic setting composed of lands that vary widely in terms of their elevation, soils, habitat features, & animal diversity, as well as in terms of land ownership, land use, and wildlife management. This course is designed to explore how animal diversity is distributed across the Greater Yellowstone Ecosystem (GYE), why such a distribution exists, & the consequences of those distributions to animal conservation. To gain a better understanding of the causes & consequences of spatial patterns of biodiversity, we will explore a variety of locations in Yellowstone National Park and its surrounding National Forests, Wildlife Refuges, and private lands.

This course will have the following components for studying animal conservation in the GYE in today’s changing world:

  1. Who are the animals of the GYE? Field identification, species ecology and life histories, and species-specific habitat needs.

  2. How are species distributed across the GYE? Where is diversity high versus low? Why might such patterns exist?

  3. How well do the distributions of species overlap with (a) existing National Park lands, (b) other wildlife reserve lands, and (c) private lands?

  4. How can we use knowledge of such patterns to conserve diverse species of wildlife in the GYE?

The course builds foundations in morning lectures, discussion, quizzes and lab exercises. Field trips include visits to diverse habitats in Yellowstone National Park and surrounding lands, techniques of animal identification, and in-depth discussion of key topics in the course. Field trips seek to build an understanding of the unique challenges of and innovative strategies for managing diverse species in a complex and changing world.

Physical Fitness Requirement: Field trips require walking up to 2 miles on moderate slopes on established trails.

 

BIOE 522 Birds of Prey of the Greater Yellowstone Ecosystem
Credits:
2
Mode of Delivery: Campus
Semester Offered: Summer (odd years)
Instructor: Dr. David Willey, Department of Ecology, MSU-Bozeman

This course is designed to explore the ecology and habitats of raptor species that live in the Greater Yellowstone Ecosystem (GYE). Birds of prey include all species of raptors. Raptors are birds with unique specializations for killing prey, e.g., raptorial claw-like feet and massive bills designed to rip, tear, and crush their prey. The course will explore strategies raptors use to find things to eat and safe places to nest. We will pay special attention to the influence of human activities on raptors and their habitats.

This course will have the following components for studying birds of prey in the GYE:

1) Who are the Birds of Prey in the GYE? Field identification of raptors, species ecology and life histories, and species-specific habitat needs.
2) Examination of key principles of raptor population ecology (studying survival and reproduction).
3) Reinforce methods of discovery: raptor responses to human encroachment into wilderness.
4) Review inquiry-based learning: the scientific method and things raptors eat (the concept of “resource availability”).

The course builds foundations in morning lectures, discussion, quizzes and lab exercises. Afternoon field trips include techniques of raptor identification and studying raptor ecology. Field trips will integrate methods to study trends in raptor population status and habitat quality.

Physical Fitness Requirement: Field trips require walking up to 2 miles on moderate slopes on established trails.

Textbook Requirement:  National Geographic Field Guide to the Birds of North America, 6th Edition (Dunn and Alderfer)
ISBN: 9781-4-26-20828-7

 

BIOE 523 Wildlife Ecology of the Northern Rocky Mountains
Credits:
2
Mode of Delivery: Campus
Semester Offered: Summer
Instructor: Dr. David Willey, Department of Ecology, MSU-Bozeman

The course is designed as an introduction to the Ecology of the Rocky Mountains as showcased within Yellowstone National Park. The Park may well be one of the few intact wild ecosystems in the lower 48 states. The course content will include principles and techniques for studying wildlife populations in the field. This course will also focus on large mammalian and avian wildlife populations that occupy terrestrial ecosystems within the Northern Rocky Mountains. The course will have the following components:

  1. Examine key principles of ecology, particularly population ecology, and review fundamental connections among species, populations, communities, and ecosystems.

  2. Use the platform of ecology to discern methods to study wildlife responses to human disturbances (e.g., habitat loss, increased urban development and encroachment in wilderness, and global warming).

  3. Explore contemporary issues of wildlife management within the Northern Rockies (e.g., wolf reintroductions in Yellowstone National Park).

This course will be based in the wildlife lab on MSU's campus on Monday. During Tuesday through Friday, the course will be field-based. We will leave Bozeman on Tuesday and return to Bozeman on Friday mid-day. We will camp for three nights during the week and cook our meals at campsites. Transportation will be provided by the MSU motor pool (vans) - no personal vehicles permitted (no exceptions).

This course has a waiting list. To enroll in this summer field course, email Maddie Felts at [email protected]

Students are expected to provide the following minimum equipment for their camping needs:

  1. One- or two-person, light-weight, non-bulky tent (no big, heavy “family” tents – we won’t have room for these); Tents also available through MSSE on a first-come-first-serve basis. Please contact msse to reserve a tent.

  2. Sleeping bag and pad (no bulky air mattresses)

  3. Basic cooking equipment + utensils (team-up with another student) – no big Coleman stoves or lanterns (bring small, lightweight, back-packing equipment)

  4. Minimal clothing for one week (layers for hot and cold weather)

  5. Bear spray - provided by MSSE

  6. Personal toiletries, sunglasses, hat, daypack, water bottle, sunscreen, camera, field notebook and pen, etc.

  7. Food for 1 day (we will restock food supplies on a daily basis, or as needed)

  8. Large coolers will be provided for perishable food.

Physical Fitness Requirement: Physical Fitness requirements. The course requires moderate outdoor physical activity. Students are expected to walk several miles, often in relatively steep terrain without established hiking trails. Please contact the instructor before signing up for this class if you have concerns about the required physical fitness level and your ability to meet these requirements.

 
BIOE 526 Symbiosis for Teachers: Eat, Prey, and Love 
Credits:
 3

Taget Audience: K - 12 grade teachers and informal educators
Mode of Delivery: Online
Semester Offered: Spring (even years)
Instructor: Joe Bradshaw, MSSE and Ecology Department, MSU-Bozeman

This course is all about the relationships between organisms. These relationships are all around us from organisms such as lichens that are composed of two separate species that can’t live on their own to the complex relationships that exist between clownfish and anemones. The relationship can also be harmful such as with heartworms in dogs. The complexity of the relationships in the world around us gives numerous opportunities to connect with your school curriculum.

Textbook Requirements:
Symbiotic Planet: A New Look at Evolution (Margulis - Basic Books) ISBN-13: 978-0465072729
AND
New Guinea Tapeworms and Jewish Grandmothers: Tales of Parasites and People  (Desowitz, W. W. Norton & Company) 1st edition, ISBN-10: 0393304264
 
BIOE 527 Teaching Evolution
Credits:
3
Target Audience: 7-12 grade teachers

Mode of Delivery: Online
Semester Offered: Fall
Instructor: Dr. Louise Mead, Education Project Director, National Center for Science Education

This course is designed to provide students with the knowledge, skills, and resources they need to teach evolution effectively. In this course, students will get an overview of evolutionary history and theory, an introduction to current topics of evolution research, tools for making evolution relevant to the science classroom and students' lives, and strategies for lesson development, as well as practical techniques and background knowledge for responding to challenges to evolution instruction.

Textbook Requirement:
The Tangled Bank:  An Introduction to Evolution (Zimmer) 2nd Edition ISBN: 9781936221448
 
BIOE 536 Local Ecosystems for Teachers
Credits: 1

Target Audience:  K - 12 educators
Mode of Delivery: Online
Semester Offered: Fall
Instructor: Joe Bradshaw, MSSE and Ecology Department, MSU-Bozeman

This course is designed for all teachers. In this exciting course, you will be introduced to fundamental ecology concepts that result in the change of ecosystems. Each week you will be working on engaging ecology activities that can be incorporated into the classroom. You will generate a leaf collection. Perform a mark-recapture investigation of small macroinvertebrates. Carry out a bioassay to evaluate the influences of pollution. Identify invasive species in your local ecosystem and determine the stability and change of bird patterns using data sets from local ecosystems.

Required Materials: 1 package of radish seeds. Find locally in your town for approximately $2.50.

 
BIOE 585 Exploring Biology

Credits: 3
Mode of Delivery: Online
Semester Offered: 
Spring
Instructor:
Erik Johnson, MS, MSSE Department, MSU-Bozeman

This course is designed to introduce teachers interested in life science to major concepts in biology. The course focuses on key concepts and related content specific to biomolecules, biochemical processes, genetics, and evolution. The course emphasizes a constructivist philosophy in an applied educational setting. Participants will actively engage in the construction of new knowledge about the biology topics covered and discover how to incorporate that learning in the K-12 classroom. Throughout the course, participants will design and implement an investigation using Wisconsin Fast Plants and discover the connections that can be made to many concepts in Biology.

Textbook Requirement: Concepts of Biology OpenStax, Fowler, Samantha; Roush, Rebecca; Wise, James

https://openstax.org/books/concepts-biology/pages/1-introduction

 

BIOE 593 Alpine Ecology
Credits:
 2
Mode of Delivery: Campus
Semester Offered: Summer 
Instructor: Dr. John Winnie, Department of Ecology, MSU-Bozeman

Our primary goals in this course will be to understand how altitude affects the structure, function and evolution of alpine and sub-alpine plants and animals, and to create ways to bring this understanding into the grade 6-12 classroom. A major theme of this class is constraint, which is really the theme of all ecology. Constraints are things that limit distribution and abundance of living things. We will explore and gather data describing the biotic (living) and abiotic (non-living) constraints of sub-alpine and alpine environments to infer how these factors affect the form, abundance and niches of a variety of plants and animals.

Through a mix of online, class and field work, students will move rapidly from basic concepts, to hands-on field work and data collection, to the synthesis and presentation of those data. In the field, students will collect data that can in turn be analyzed and interpreted later by their own students. During nightly break-out sessions, students will work on ways to integrate the material we gather in the field into multimedia presentations that can be used in teaching modules. Students will present and share data and teaching module components with each other on the last day of class.

For us to progress smoothly during the class week based out of MSU, 4 weeks of background reading and study are necessary. Pre-class week materials, including homework assignments, will be posted on the course’s Desire to Learn (D2L) website beginning June 15th.
Field Work: We will meet on the MSU campus in Bozeman and spend the week in Beartooth Mountains. During the day, students will work cooperatively to gather data, photos and (optional) video clips in the field, then in the evenings will work together to link visual materials back to the data. The goal here is to create a virtual field trip for primary and secondary level students, illustrating every aspect of a simple descriptive natural history study, from initial observations, to hypothesis generation, to data gathering, to data summary and finally to drawing overall conclusions.

 

BIOE 595 Marine Ecosystems for Teachers
Credits:
 3
Mode of Delivery: Online
Semester Offered: Fall
Instructor: Dr. Tom McMahon, Department of Ecology, MSU-Bozeman

This course is designed for students to gain a broad understanding of structure and function of the world's marine ecosystems and a broad knowledge of the major conservation issues in the oceans including climate change, overfishing, coral reef loss, and ocean acidification. The course will integrate in-depth study of each of the major marine ecosystems with reading and discussion of major conservation issues. 

Textbook Requirement:  Atlas of the Oceans: an Ecological Survey of Underwater Life, 11th Ed.  (Farndon - Yale)
ISBN: 9780300167504
 

BIOE 596 Land Use Issues in the Greater Yellowstone Ecosystem
Credits:
 2
Mode of Delivery: Campus
Semester Offered: Summer 
Instructor: Dr. Jerry Johnson, Department of Political Science, MSU-Bozeman

Romance dominate the lands west of the 100th meridian. The redrock public lands of the desert southwest, the iconic parks of Yellowstone and Yosemite, and the vast wilderness of central Idaho hold wildlife and habitat on par with the Serengeti or the Amazon. For westerners, romance lands are our home territory; they provide the context and substance of our lives. They are the armature around which ecosystem services are constructed. They are also primarily public lands.

1862 is a watershed year for public lands west of the 100th meridian. During the early part of the Civil War, Abraham Lincoln signed three bills that would accelerate a westward expansion. These were: the Homestead Act, the Morrill Land Grant Act, and, most importantly, the Pacific Railway Act. Just ten years later President Grant established Yellowstone National Park, the first national park in the world. The ecology and economy of the west has been changing and shifting ever since.

One way to place the discussion of growth and change in context is to understand the role of the Yellowstone Grizzly bear. This class will focus on the science of conservation with emphasis placed on the provision of ecosystem services and the bear. The class involves morning lectures, afternoon field trips, and an applied data collection exercise.  

This course will: 

  1. Address the role of romance/public lands to the Greater Yellowstone Ecosystem.
  2. Explore the concept of rewilding on public and private lands.
  3. Examine past and present patterns of development and assess their impact.
 
BIOE 597 Ecology of Trout Streams
Credits:
 2
Mode of Delivery: Campus
Semester Offered: Summer (even years) 
Instructors:
Dr. Lindsey Albertson, Department of Ecology, MSU-Bozeman

Christine Verhille, Department of Ecology, MSU-Bozeman

Montana is home to world-renowned trout streams, and this course is designed to delve into how trout and trout streams function and some of the current issues surrounding their management. The course content will include principles and techniques for studying trout and trout streams in the laboratory and the field. The course will have the following components:

  1. Identification of the main types of trout and stream insects found in Montana streams and their life history, habitat use, adaptations for living in fast water.

  2. Examine key environmental components of a trout stream (e.g., water temperature, physical habitat features) and how these factors affect population dynamics of both trout and their main insect prey.

  3. Explore contemporary issues of trout stream management within the Northern Rockies (e.g., whirling disease, habitat restoration).

This course will combine laboratory lectures and exercises with day-long field visits to area streams to collect aquatic insects, conduct habitat analyses, and view various types of stream management practices. On one field trip, students will don wet suits and directly observe trout behavior. Final Projects will emphasize applications to K-12 science classrooms.

 

BIOE 599 Advanced Ecology
Credits:
2
Mode of Delivery: Blended (Online and Field experience)
Semester Offered: Fall (winter)
Instructor: Dr. John Winnie, Department of Ecology, MSU-Bozeman

Our primary goals in this course will be to understand the theoretical underpinnings of basic ecological processes including population growth, competition, predator-prey interactions, trophic cascades, and to link theory to the real world using our own observations and field data. Through a mix of field and class work, students will move rapidly from foundational theory, to hands-on field work and data collection, to the basics of analyses. For us to progress smoothly during the class week, ~3 weeks of background reading and study are necessary. Pre-class work, will be posted on the course’s Desire to Learn (D2L) website in advance of the field week.

We will be based out of accommodations in or near Yellowstone National Park during our field week. We will spend each day in the field observing wildlife, studying field craft, generating hypotheses, learning about study design, and gathering data to test our hypotheses. Evening class work will be a combination of lecture, data analyses, and exercises designed to familiarize students with foundational ecological theories and the processes involved in hypothesis testing.

Physical Requirements. Field days will be long (up to 8 hours) and moderately strenuous. Students must be prepared to spend the better part of 5 days hiking, snowshoeing, and doing field work in cold weather at high elevation (~7000'). +). Those  coming from low elevation areas are encouraged to arrive early and spend a few days at or above 5000’ to acclimatize before class begins.

Required Textbook:  A Primer of Ecology, by Gotelli, fourth edition.

In addition there will be readings from the primary literature, in particular, research done in the GYE. These will be posted on the class D2L website content page.

Additional course fee of $250 will be added to student accounts to cover the cost of lodging and transportation.

 

BIOH 586 Big Ideas Approach for AP Biology Teachers 
Credits:
 3
Mode of Delivery: Online
Semester Offered: Fall (even years)
Instructor: Deb Price, MSSE Department, MSU-Bozeman

This course is designed to introduce teachers of Advanced Placement (AP) Biology to a Big Ideas approach: evolution, energy, information and system.  A Big Idea  approach focuses on  key concepts and related content that define the AP Biology course and exam.  Big ideas encompass the core scientific principles, theories and processes governing living organisms and biological systems.  Students in the course will finish by developing a lesson plan using this pedagogy that could be used for a high school AP Biology course.

Required Textbook: Campbell Biology in Focus, 3rd Edition (Urry - Pearson) ISBN 9780134710679

Cell Biology and Neuroscience

BIOH 595 Anatomy & Physiology
Credits:
 3
Mode of Delivery: Online
Semester Offered: Summer

Instructor: Scott Taylor, Cell Biology & Neuroscience - MSU

This course is designed for high-school and post-secondary instructors who are either currently teaching an anatomy and physiology course, or are interested in developing one. The goal of the course is to help instructors develop an A&P curriculum that integrates Next Generation Science Standards. Participants from all A&P instructional backgrounds are welcome, and should expect to work in a collaborative environment.

Chemistry and Biochemistry

CHMY 506 Integrating Computers in Chemistry Lab Instruction
Credits:
2
Mode of Delivery: Online
Semester Offered: Summer
Instructor: Dr. Candace Goodman, Department of Chemistry and Biochemistry, MSU-Bozeman

This course provides an opportunity for grades 7-14 science teachers to explore innovations in curriculum, technology, modern laboratory facilities, and new learning strategies that encourage discovery-based learning. Properly used, a personal computer and an inexpensive data acquisition interface can enhance the teaching of laboratory science. Graduate students enrolled in this class will learn ways to use computer technology to engage students in discovery-based learning, to improve laboratory time utilization, to reduce equipment and chemical costs, and to improve safety. 

 

CHMY 587 Exploring Chemistry
Credits:
 3
Mode of Delivery: Online
Semester Offered: Summer
Instructor: Amanda Mattson, Department of Chemistry and Biochemistry, MSU-Bozeman

This course provides an in depth discussion of critical concepts in chemistry. Chemical principles will be presented in the context of real-world issues including energy production (biofuels), chemistry of water, and polymers. Additional emphasis will be placed on the role of experimental sciences in teaching reading, writing, and logical thinking across multiple student backgrounds. Appropriate student laboratory designs will be addressed.

Textbook: Chemistry in Context 10th Ed (American Chemical Society)

E-book with 6 month access: ISBN 9781260497052, Looseleaf text:  ISBN 9781260497069, Hardcover text: ISBN 9781260240849

 

CHMY 593 Special Topics: Equilibrium, Thermodynamics, & Kinetics 
Credits:
 3
Mode of Delivery: Online
Semester Offered: Spring
Instructor: Amanda Mattson,Department of Chemistry and Biochemistry, MSU-Bozeman

Equilibrium, Thermodynamics, and Kinetics explain why reactions stop where they do, why they get hot or cold, and how fast they occur.  The rusting of a car and the explosion of a stick of TNT are actually the same type of process – thankfully happening at a different rate.  How can reactions be so similar and so different at the same time?

These three topics make up a large portion of the “Reactions” section of the AP exam (35-40%) as well as a significant portion of the second half of an International Baccalaureate Chemistry course.  These topics also represent some of the more difficult material to understand in General Chemistry. 

This course is designed to help instructors bolster their background in equilibrium, thermodynamics, kinetics as well as provide assistance in the teaching of these topics. A classroom population represents a distribution of learning styles and a goal of this course is to provide a variety of instructional tools for teachers to utilize in their classrooms.

Textbook: ISBN 978013443652 - Chemistry: Structures and Properties 2nd Ed 18 (TRO-Pearson) OR ISBN 9780134777559 (loose-leaf version)

Older version also accepted: ISBN 9780321729736  - Chemistry: Structures and Properties (Tro - Pearson)

 

CHMY 594 Science Lab Safety and Risk Management
Credits:
 1
Mode of Delivery: Campus
Semester Offered: Summer
Instructor: Dr. Steven Holmgren, Department of Chemistry and Biochemistry, MSU-Bozeman

This seminar provides information on safe school laboratory practices including protocols for chemical purchase, storage and disposal, as well as the use of personal safety equipment.  Fire control procedures will be addressed including a hands-on fire extinguishing experience.  Personal risk and liability will be discussed.  Biological lab safety issues will also be considered.

 

CHMY 595 Chemistry of the Environment: Water, Air, Earth
Credits:
3
Mode of Delivery: Online
Semester Offered: Summer
Instructors:
Dr. Bill McLaughlin, Department of Chemistry and Biochemistry, MSU-Bozeman
Amy Washtak, MSSE Department, MSU-Bozeman

This course is designed to familiarize students with basic general science and chemistry concepts of the environment, including water, air and Earth - as well as to provide opportunities to enrich these chemistry concepts through applications and examples. Since this course will be building upon basic chemistry concepts, it is assumed that teachers taking this course have taken general chemistry at the undergraduate level, or the equivalent.

The course will integrate chemistry concepts of water, air and Earth with environmental context. Instructors will use narratives, supplemental textbook examples, internet examples as well as material compiled on the student’s part. The textbook will be used as a basis for the course but students will be required to utilize materials from various resources, including but not limited to: the Internet, local professionals and their own classroom materials. Students will complete two original curriculum teaching projects derived from course content, which are designed to compliment existing classroom content. Students will be assessed through the following ways:
  • Weekly on-line discussions of a topic posed which is derived from the weekly narrative
  • Concise weekly homework questions derived from chemistry concepts explored in narratives and textbook
  • The development of two complete and original curriculum projects derived from course content and one original essay response pertaining to chemistry content.

Textbook: ISBN 9780198749974 - Environmental Chemistry: A Global Perspective, 4th Ed - (3rd edition is also acceptable)

 

CHMY 596 Exploring Organic Chemistry 
Credits:
 3
Mode of Delivery: Online
Semester Offered: Fall
Instructor: Robert DesEnfants,Department of Chemistry and Biochemistry, MSU-Bozeman

This online course targets science teachers, Grades 6-12. The course will provide a general review/background in organic chemistry with an emphasis on functional groups and covalent chemistry reaction mechanisms while focusing on applications including polymers. Providing a solid foundation of basic principles of organic chemistry will allow teachers to describe and explain practical applications of organic chemistry.

A class discussion forum will be part of the course and allow teachers to share and explain teaching, demonstrations and lab activities from the course. In addition to on-line homework sets and exams, participants will also design a teaching project that uses course topics to develop an original teaching component to use in their own teaching setting. Participants will receive extra help with course topics through a chapter-by-chapter commentary.  Where appropriate, emphasis will be on applications of organic chemistry to everyday life.  

This course provides background for future courses in biochemistry for middle and high school teachers.

Textbook: ISBN 9781119106968 - Intro to Organic Chemistry 6th Ed (Brown - Wiley)(4th & 5th editions are also accepted)

 

CHMY 597 Exploring Biochemistry I 
Credits:
3
Mode of Delivery: Online
Semester Offered: Summer (odd years)
Instructor: Dr. Angie Sower, Department of Chemistry and Biochemistry, MSU-Bozeman

The course will consider the reactions of the principle biochemical molecules (carbohydrates, lipids, proteins, and nucleic acids) with additional emphasis on biomedical topics.  The primary goal of this course is to promote critical thinking about important, current health issues and to examine the role of laboratory modules in teaching these concepts.  General biochemistry principles will be presented to understand the diseases under review. Written material will be provided on advanced topics.

Required Textbook: ISBN 9780321707338 - Principles of Biochemistry 5th ed. (Moran - Prentice Hall)

 

CHMY 598 Exploring Biochemistry II: Metabolism (Prerequisite: CHMY 597 Exploring Biochemistry I)
Credits:
3
Mode of Delivery: Online
Semester Offered: Summer (even years)
Instructor: Dr. Angie Sower, Department of Chemistry and Biochemistry, MSU-Bozeman

This course is designed to serve as the second semester of a two-semester sequence of biochemical principles. The course will build on topics covered in CHMY 597 (Exploring Biochemistry I) such as carbohydrates, lipids, proteins and nucleic acids. The proposed course will investigate the metabolism of each of these biological molecules while exploring applications of these topics to a classroom setting. The textbook will be used as a basis for the course but students will be required to utilize materials from various resources including chapter summaries, related internet websites, scientific journals, and material compiled on the students's part.

    Students will be assessed through the following methods:
  • online discussions of a topic related to the weekly material
  • homework sets and/or unit/chapter exams that reflect the application of material from weekly content (composed of multiple-choice questions)
  • final exam (composed of multiple-choice questions)
  • development of a project (classroom lesson or other application) that incorporates content from the course

Required Textbook: ISBN 9780321707338 - Principles of Biochemistry 5th ed. (Moran - Prentice Hall)

 

CHMY 599 An Atoms-First Primer for AP/IB Chemistry Teachers
Credits:
 3
Mode of Delivery: Online
Semester Offered: Fall (odd years)
Instructors: Amanda Mattson, Department of Chemistry and Biochemistry, MSU-Bozeman

This course is designed to introduce teachers of Advanced Placement (AP) or International Baccalaureate (IB) Chemistry courses to an Atoms-First pedagogy in the teaching of their courses. The course is an optional content course for students in the MSSE and certificate programs at MSU, but will also attract teachers needing continuing education credits for re-licensure. The textbook and its ancillary materials will be used as the primary basis for the course. However, students will also be encouraged to use additional internet resources as needed. An Atoms-First pedagogy approaches teaching AP/IB Chemistry with emphasis on first building a robust atomic understanding before moving to more difficult chemical concepts. Students in the course will finish by developing a lesson plan using this pedagogy that could be used for a high school AP/IB chemistry course.

Textbook: ISBN 9780134436524  - Chemistry: Structure and Properties  (Tro - Pearson) 2nd Ed. + Access code for Mastering homework. Used and rental books may require a separate purchase of an access code for the Mastering homework.

Computer Science

CSCI 581 Computer Science in the Classroom: Computational Thinking for Teachers

Credits: 2
Mode of Delivery: Campus
Semester Offered: Summer (odd years)
Instructor: Hunter Lloyd, Computer Science Department, MSU-Bozeman

This course examines the computing field and how it impacts the human condition. Exciting ideas and influential people are introduced. A gentle introduction to computational thinking using the Python programming language is provided. The course also introduces participants to robotic platforms.

 
CSCI 582 Computer Science in the Classroom: The Joy and Beauty of Data

Credits2
Mode of Delivery: 
Online
Semester Offered: 
Summer
Instructor: 
Hunter Lloyd, Computer Science Department, MSU-Bozeman

This course is intended for 7-12th grade teachers who want to learn how to incorporate computational ideas in the classroom.  In addition, teachers who take the course will be introduced to the broad area of data science and will extend their knowledge of the Python programming language. High school teachers who complete the course can potentially teach CSCI 127, The Joy and Beauty of Data, as a dual enrollment course.

The course builds upon the pre-requisite course, “Joy and Beauty of Computing,” previously offered at MSU (2014 – 2017), the University of Montana (2017), Montana Tech (2018) and Salish-Kootenai College (2019). 

Support for Montana teachers is available. For more information and how to apply, please contact the MSSE Program at [email protected].

Earth Science 

ERTH 516 Northern Rocky Mountain Geology
Credits:
2
Mode of Delivery: Campus
Semester Offered: Summer
Instructor: Dr. Dave Lageson, Department of Earth Sciences, MSU-Bozeman

This course will investigate the geological history and evolution of the Northern Rocky Mountain region. Topics to be covered will include local stratigraphy, the Laramide and Sevier orogenic events, volcanism in and around Yellowstone National Park, earthquake activity within the Intermountain Seismic Belt, and many more. Daily field trips from campus will provide “hands-on learning” in some of the best-exposed, classic geologic localities in the Rocky Mountains. The course will integrate many aspects of physical geology, historical geology, geomorphology, structural geology, seismology, volcanology, and tectonics in a manner that is relevant and applicable to the region surrounding Montana State University.

Physical fitness requirements: In order to study the geology of the greater Yellowstone region in the field, this course will involve outdoor physical activity. Students are expected to hike in moderate mountainous terrain in order to accomplish course goals, namely hands-on field experience with geologic observations and interpretations. Interested students should contact the MSSE office to register for the course and to communicate their ability to meet the physical fitness requirements for the course. Please email Maddie at [email protected].

 
ERTH 519 Watershed Hydrology for Teachers
Credits: 
Mode of Delivery: Online
Semester Offered: Spring (odd years)
Instructor: Stephanie McGinnis, Department of Land Resources Environmental Science, MSU-Bozeman
 

This course increases science teacher understanding of watershed hydrology and the relation to water quality and quantity through discussion, lecture, readings, and assignments.  An ancillary goal is to fully prepare teachers to implement course knowledge into their classroom by designing age appropriate watershed hydrology lesson plans throughout the course that will be ready for implementation in their classroom/teaching setting as individual lesson plans or a complete unit.  Students will be responsible for purchasing the textbook available through the MSU bookstore or through Amazon.

By the end of the course, expected learner outcomes are that students will 1) have a deep understanding of the relationships among watershed hydrology, water quality, and water quantity, 2) know how water inputs and outputs are measured, 3) understand how human modification of watersheds influences surface and ground water flow 4) understand how to access and manipulate online water data, and 5) have the skills and knowledge to implement lesson plans designed in this course appropriate for use in the student’s educational setting.

Textbook Requirement: ISBN-13978-1421413730 - Elements of Physical Hydrology, 2nd ed. (Hornberger and Wiberg)

 
ERTH 520 Fundamentals of Oceanography
Credits:
3
Target Audience: 7-12 grade teachers

Mode of Delivery: Online
Semester Offered: Spring
Instructor: Dr. Sean Griffin, Marine Science

Fundamentals of Oceanography offers an introduction to the physical, biological, chemical and geological processes of the ocean and its ecosystems. Teachers will learn about the complex interactions between these properties, their influence on terrestrial ecosystems and the impacts humans have on these processes. Exciting laboratory exercises can be adapted to be offered at any grade level.

Textbooks: ISBN 100073376701 - An Introduction to the World’s Oceans, 10th edition (Sverdrup & Armbrust - McGraw) ANDISBN 101878663356 - Life on an Ocean Planet: Laboratory and Activities Manual (Current Pub 2006)
 
ERTH 521 Geology of the Moon
Credits:
 3
Target Audience: 5-9 grade teachers
Mode of Delivery: Online
Semester Offered: Spring (Even years)
Instructor:  Dr. Casandra Runyon, Associate Professor of Geology

Lynn Powers, MSSE Department, MSU-Bozeman

This course is designed for practicing teachers who want to understand more about the Moon and its history and relationship to Earth. We will explore theories for its formation and the geologic processes involved in its evolution, including the differentiation of its layers, volcanic activity, and impact cratering, with each discussion encompassing comparisons between the Earth and Moon.  We will investigate the Moon’s orbital characteristics (revolution, rotation, phases and eclipses) and explore current and upcoming missions to the Moon (the material will be connected to National Science Education Standards). During this course you will interactively participate through a combination of presentations, assigned readings, on-line discussions, classroom exercises and dynamic activities.

Participants must purchase some craft items for activities (play-doh, baking soda and gelatin for volcanos, etc.). Other materials for use in the course will be sent to participants, including hand-held spectrometers and rocks.  Some of these are to be returned at the completion of the course.

Required Materials: 
Participants must purchase some craft items for activities (play-doh, baking soda and gelatin for volcanos, etc.), list will be provided in the course. Other materials for use in the course will be sent to participants, including hand-held spectrometers and rocks.  Some of these are to be returned at the completion of the course. If you live abroad, we will not be able to send you the hand-held spectrometer, so unless you have access to one on your own, you should not register for this course. If you have questions please contact MSSE at [email protected]
 
ERTH 522 Teaching Middle School Earth System Science
Credits:
3

Target Audience: Teachers interested in Earth System Sceince and problem based learning.
Mode of Delivery: Online
Semester Offered: Spring (even years)
Instructor: Robyn Gotz, Earth Science Department, MSU-Bozeman

This course is taught in conjunction with the Earth System Science Alliance. ESSEA has a large repository of modules focused on the subject of earth system science. All modules use problem based learning to explore the events and interactions between the lithosphere, hydrosphere, biosphere, and atmosphere. The middle school course is composed of 3 modules plus an introduction module. Teachers utilize problem based learning to study both event to sphere interactions as well as sphere to sphere interactions and how one interaction can lead to other interactions.

All materials are included in D2L

 
ERTH 523 Weather for Elementary Teachers
Credits:
 1
Target Audience: K-8 grade teachers
Mode of Delivery: Online
Semester Offered: Fall (even years)
Instructor: Robyn Gotz, Earth Science Department, MSU-Bozeman

In this eight week online course we will take a look at learning weather concepts and how to incorporate them into the elementary classroom using hands-on activities. Observing weather patterns from the past, present and future is easy and fun! The principles you learn will apply to air pollution, crop selection and forecasting.

The goals of this course are to…

  • Identify the parts that compose the atmosphere
  • Count time and space coordinates
  • Identify weather elements and icons
  • Analyze and read weather maps
  • Uncover the importance of temperature
  • Use pressure scales to enhance understanding of barometry, density and buoyancy
  • Evaluate pressure patterns in storms
  • Identify cloud types and their formations
  • Describe humidity as related to precipitation and dew point
  • Measure and observe wind
  • Evaluate wind patterns in storms

Required Materials: All necessary materials will be shipped to students. A $46 charge will be charged to student accounts to cover the cost of materials. If you live abroad, please notify us of your foreign address so that materials can be sent to you directly. Contact MSSE at [email protected]

 

ERTH 524 K-14 Earth Systems Science
Credits:
2
Mode of Delivery: Online
Semester Offered: Fall
Instructor: Robyn Gotz, Earth Science Department, MSU-Bozeman

Participants will learn to find the Internet's abundant digital Earth Systems Science (ESS) resources and use these resources to create integrated mathematics and science lessons. Participants will learn to adapt online resources to their own instructional environments at the K-14 levels.

ESS emphasizes the dynamic interrelationships among changes in the atmosphere, ocean circulation patterns, and environmental processes on and beneath the earth's surface. Internet-Based K-14 Earth System Science Instruction is designed for K-14 teachers already familiar with using basic computer and Internet tools. Participants will integrate concepts from ESS with Internet resources, such as digital weather images, near-real-time earthquake data, and archived climate data, for examples. Necessary ESS scientific background is provided and effective pedagogical strategies are discussed for using computer technology with students at all levels K-14. Although the course science content is based in ESS, emphasis will be on the integration of mathematics and earth systems science, using discovery and constructivist methods.

Optional textbooks/Materials: A used geology or physical geography textbook.
The instructor will provide reading materials online. There is no required text, but participants are encouraged to obtain a used geology or physical geography textbook to use as a reference - particularly if they have never taken an earth science class.

 
ERTH 525 Landforms for Elementary Teachers
Credits:
 1

Target Audience: K-8 grade teachers
Mode of Delivery: Online
Semester Offered: Summer
Instructor: Dr. Suzanna Carrithers Soileau, Land Resources and Environmental Sciences, MSU-Bozeman

In this online course we will investigate our landforms and the processes that shaped some of the most prominent landmarks and features across the country. To do this, we will look at a variety of landscapes and investigate how they came to look like they do. Through hands-on labs, we will model landforms and encourage sharing and discussions of additional teaching ideas in this course. The principles you learn will increase your confidence in teaching science in general as well as landforms in particular.

By taking this course, students will:

  • Articulate the mechanisms behind the development of mountains, volcanoes, valleys, hills, and coastal areas through geologic processes.
  • Apply the portfolio of activities they developed in the course to enhance elementary student curriculum through hands on experiential learning of landform science.
  • Develop landform science activities that illustrate the broader relationship to other earth sciences, as well multidisciplinary opportunities in art, history, civics, etc.
  • Use and demonstrate creative and critical thinking skills when addressing potential barriers to implementing landform science in their classroom.
  • Evaluate K-6 student comprehension of landform science through a variety of assessment tools and techniques.
  • Value the network/community of practice developed through in-class sharing and discussions of teaching ideas and approaches to landform study.

Each week’s work will include text reading assignments, participatory lab activities, participation/evaluation exchange in on-line discussions, and written homework assignments.

Required textbooks: Reading the Earth, Landforms in the Making (Wyckoff) ISBN: 0967407508

 
ERTH 527 Weather and Climate for Teachers  
Credits: 
3

Target Audience: 9-12 grade teachers
Mode of Delivery: Online
Semester Offered: Spring
Instructor: Robyn Gotz, Earth Science Department, MSU-Bozeman

Few subjects within Earth Sciences are as far reaching as the study of weather (meteorology) and climate (climatology). We plan our days based on the current weather, plant food supplies based on seasonal forecasts, and develop economies based on regional climate. Weather and climate also explain major biogeographic patterns and influence physical processes shaping Earth.

With unprecedented climate changes likely inevitable in our lifetimes, the study of weather and climate has also taken on added importance in recent decades. For these reasons and many more, it is imperative that we equip our teachers and educators with the tools to better prepare and motivate the next generation of scientists in this field. In this course we will build a physical understanding of how Earth systems interact to create the weather we see on a daily basis and the climatic patterns that emerge at larger spatial and temporal scales.


The course goals for teachers in grades 9-12 are to:

  • Increase weather and climate content knowledge,
  • Increase pedagogical skills related to teaching weather and climate,
  • Create a "tool-kit" of teaching activities relating to weather and climate, and
  • Engender changes in teacher-participants' classrooms that lead to an increased quantity and quality of weather and climate related instruction.

These goals are accomplished through course readings, using a range of on-line resources, development and maintenance of a local weather journal and participant discussions on weather and climate and on developing classroom activities. This course is designed for practicing science teachers at the high school level. 

Required textbook: Understanding Weather & Climate 6th or 7th edition (Aguado & Burt). 

Used or new text (physical or ebook) is fine for the class. You do not need a text that comes with access to Mastering Meteorology, though you will have access to animations, tutorials, mock exams and other study resources if you have access to either of those resources.

 
ERTH 528 Understanding Climate Change (Prerequisite: ERTH 527 or equivalent)
Credits: 
3

Target Audience: 8 - 14 grade teachers
Mode of Delivery: Online
Semester Offered: Summer
Instructor: Robyn Gotz, Earth Science Department, MSU-Bozeman

The science of climate change is a complex subject that balances the physical record and scientific fact with politics, policy, and ethics. This course explores the science of climate change and research-based best practices for teaching climate change.

Students will learn how the climate system works, what factors cause climate to change across different time scales and how those factors interact. We will also explore how climate has changed in the past and how scientists use models, observations and theory to make predictions about future climate. The course explores evidence for changes in land and ocean temperature, changes in the cryosphere, sea level and acidity change due to global warming. Students will learn how climate change today is different from past climate cycles and how satellites and other technologies are revealing the global signals of a changing climate. Finally, the course looks at the connection between human activity and the current warming trend and considers some of the potential social, economic and environmental consequences of climate change.

Throughout the course, students will read and discuss recent research studies on teaching and learning about climate change and evaluate their own teaching and learning within the context of these studies.  Students will create classroom teaching activities using the content and pedagogical knowledge gained in the course.

In light of the changes we have already observed, and the projected future changes it is imperative that we equip our teacher and educators with the tools to better prepare and motivate the next generation of scientists in this field. In this course we will build an understanding of climate change and how it will impact our future.

The course goals for teachers in grades 8-12 are to:

  • Increase content knowledge about climate change,
  • Increase pedagogical skills related to teaching climate change topics,
  • Create a "tool-kit" of teaching activities relating to climate change, and
  • Engender changes in teacher-participants' classrooms that lead to an increased quantity and quality of climate change related instruction.

These goals are accomplished through a highly structured series of on-line lectures, quizzes, participant discussions, and online activities. This course is specially designed for practicing science teachers at the upper middle to high school level.  There is a prerequisite requirement of Weather and Climate for Teachers (ERTH 527) or an equivalent.

Required Readings:

Introduction to Climate Science Andreas Schmittner Retrieved from: Introduction to Climate Science.
Teaching and Learning about Climate Change: A Framework for Educators Roychoudhury D. Shepardson, A. Hirsch 2017, Routledge, New York. Available through the MSU library
IPCC Fifth Assessment Report Retrieved from: IPCC Fifth Assessment Report
IPCC Report - Global Warming of 1.5° C Retrieved from: IPCC Report - Global Warming of 1.5° C
 

ERTH 594 Geology Seminar: Geology of Earthquakes
Credits:
 1
Mode of Delivery: Campus
Semester Offered: Summer
Instructor: Dr. Dave Lageson, Department of Earth Sciences, MSU-Bozeman

Geology of Earthquakes is a field-based course that examines the causes and consequences of earthquake activity in the Northern Intermountain Seismic Belt (NISB) of western Montana. We will study landforms that tell the story of geologically recent earthquake activity in the region (i.e., neotectonic deformation), and investigate new and old building construction practices in the Bozeman area for their potential “performance” during an earthquake. The course will feature a day-long trip to the famous Hebgen Lake earthquake site in the southern Madison Range.

 

ERTH 595 Historical Geology
Credits:
3
Mode of Delivery: Online
Semester Offered: Fall
Instructor: Dr. Dan Lawver, Department of Earth Sciences, MSU-Bozeman

Special Goals:  The course will provide a rigorous overview of the evolution of Earth and its life forms with a focus on the major trends and interactions between geology and life. Additionally, the course will address the primary methods that geologists use to investigate the history of our planet. Throughout the semester students will be required to participating in online class discussions (via Zoom), complete weekly chapter summaries, and a class project. The class project will require students to create lesson plans designed to adapt content from the course to their own classrooms. 

Textbook: ISBN 9781119228349 - Earth Through Time 11th edition  (Levin - Wiley)

 

ERTH 596 Geology of Glacier National Park
Credits:
2
Mode of Delivery: Campus
Semester Offered: Summer
Instructor: Callan Bentley, Assistant Professor of Geology, Piedmont Virginia Community College

This field course will focus on four general geological topics: (1) sedimentology and stratigraphy: interpreting Earth surface history as preserved in strata, (2) structural geology and tectonic history, (3) paleontology, and (4) glaciers, glacial geomorphology, and climate change, all revealed by the wonderful outdoor laboratory of Glacier National Park and the surrounding region. Daily expectations include hiking up to 9 miles, tent camping, outdoor cooking, and driving long distances.

Physical fitness requirements: In order to study the field geology of Glacier National Park, this course will involve very strenuous outdoor physical activity. Students are expected to hike several miles at high elevations in rough, rocky, mountainous terrain in order to accomplish course goals, namely hands-on field experience with geologic observations and interpretations. To assure that all students will have the full benefit of the program, please contact the MSSE Office before signing up for this class if you have concerns about the required physical fitness level and your ability to meet the expectations of this course. If you require an accommodation because of a disability, please contact the MSSE office.

 

ERTH 597 Vertebrate Paleontology for Teachers 
Credits: 3
Mode of Delivery: Online
Semester offered: Spring
Instructor: Dr. Dan Lawver, Department of Earth Sciences, MSU-Bozeman

This course will focus on the evolution of vertebrate life throughout Earth’s history. As a result of this course, students will demonstrate an understanding of evolutionary processes. Through class discussions and assignments, students will identify the vast diversity of both extinct and extant vertebrates, and their interrelationships with one another. At the end of the course, students will be able to:

• Describe the evolution and processes involving in organismal change through time
• Identify the diversity within vertebrate clades
• Describe phylogenetics and the interrelationships of vertebrates
• Create a unit of study specific to their teaching situation that incorporates major course content specific to the evolution of vertebrate life

Textbook: ISBN: 978-1-118-40755-4 - Vertebrate Paleontology 4th Ed. (Benton-Blackwell) Available online

 

GEO 521 Dinosaur Paleontology I
Credits:
2
Mode of Delivery: Campus
Semester Offered: Summer 
Instructors: Dr. Dan Lawver, Department of Earth Sciences, MSU-Bozeman

This course is designed as an introduction to the geology and dinosaur paleontology of the Hell Creek Formation of eastern Montana. The Hell Creek Formation has long been known for its diverse dinosaur taxa, including Tyrannosaurus rex and Triceratops, as well as exposures of the iridium layer associated with dinosaur extinction 65 million years ago. The combination of slide presentations, labs, and daily hiking in Makoshika State Park will provide both background information and “hands-on” learning experience. Techniques covered during the class include interpretation of sedimentary environments, taphonomy, and fossil collection and preparation. This course will integrate many aspects of biology, physical geology, paleogeography, and tectonics.

Two transportation options are available: 1. Vans will leave from the Strand Union Building (south entrance) on the MSU campus at 8 a.m. Monday morning and drive to Makoshika State Park near Glendive, MT. Approximately driving time is seven hours. 2. Participants may drive their own vehicles and meet Monday at 4pm at the Lion’s Club facility, Sleepy Hollow Lodge within Makoshika State Park. Lunch will be provided on travel days.

The facilities include individual cabins that are rustic but completely furnished and accommodate 4 to 6 students, a lodge where meals will be provided, and a separate shower house with toilet facilities. Students should furnish their own bedding and personal items such as towels, shower shoes, etc. Special dietary requirements should be noted on the registration form. Students should have appropriate hiking boots and be prepared for rain and cool weather. Additional required items include backpack, field notebook and pencils, and water containers (3-4 liters total capacity).

Physical fitness requirements: The course requires moderate to strenuous outdoor physical activity. Students are expected to walk several miles, often in relatively steep terrain without established hiking trails. Temperatures are often in the 90°F range. Please contact the instructor before signing up for this class if you have concerns about the required physical fitness level and your ability to meet these requirements.

 

GEO 522 Dinosaur Paleontology II (Prerequisite GEO 521 Dinosaur Paleontology I)
Credits:
2
Mode of Delivery: Campus
Semester Offered: Summer (odd years)
Instructor: Dr. Dan Lawver, Department of Earth Sciences, MSU-Bozeman

The goal and purpose of this course is to provide an in-depth course for grade 7-12 teachers in geology and paleontology that builds on previous experience and field techniques acquired from GEOL 521 Dinosaur Paleontology of the Hell Creek Formation. In addition to providing basic information on geology and paleontology, this field course includes information on how paleontologists use rocks, fossils and extant animals and modern environments to formulate interpretations about the past. By the end of this course, students will be able to identify sedimentary rocks in which fossils are found, use sedimentary structures for interpretation of depositional environments, and have a better understanding of Montana's geologic past.

 
GEO 585 Mineralogy for Teachers

Credits: 1
Mode of Delivery: 
Campus
Semester Offered: 
Summer
Instructor: 
Dr. Dave Lageson, Department of Earth Sciences, MSU-Bozeman

This course covers fundamental chemical concepts used in mineralogy, including (but not limited to): 

a) Crystallography and crystal chemistry
b) Physical properties of minerals as related to their crystal structures and chemistry
c) Anion classification and naming of minerals
d) Gemstones versus everyday minerals (i.e., what makes a gemstone special?)
e) Identification of minerals in hand specimen (lab work)
f) Identification of minerals in rocks (lab work)
g) Brief introduction to thin-section analysis and various analytical techniques of mineral analysis

Education

MSSE 501 Inquiry through Science and Engineering Practices
Credit:
2
Mode of Delivery: Online
Semester Offered: Fall, Spring, Summer
Instructor: Dr. John Graves, MSSE Department, MSU-Bozeman

This course takes a practitioner's look at the art of inquiry instruction appropriate to all learning settings, including, but not limited to classrooms, museums, planetariums, etc. Using many of the current pedagogical approaches of instruction including constructivism, misconceptions, the 5 E learning model, reflective practice, conceptual change theory and others, students in this course will critically examine their current instructional practice and together craft new approaches to teaching inquiry in the science classroom through the lens of the Science & Engineering Practices as outlined in A Framework for K-12 Science Education. Course assignments include readings, reflections on Science & Engineering Practices, discussions and the completion of an individualized inquiry project. Students in the course can expect a highly active, fully engaging, professionally stimulating class session each week. 

John has over 35 years of experience with middle school and university instruction. He has a passion for inquiry instruction and models thought-provoking, challenging examples of research-based best practices of inquiry instruction through the Science & Engineering Practices. The emphasis of the course will be on helping teachers gain the skills necessary to improve inquiry teaching in their teaching settings.

Choose the text that best supplements the level you teach:

ISBN: 9781452299280 - Inquire Within: Implementing Inquiry 3rd edition (Llewellyn - Sage)
OR

ISBN:  9781452244457 -  Teaching High School Science through Inquiry and Argumentation 2nd Edition (Llewellyn - Sage)

 

MSSE 502 Emerging Technology & the Science Classroom 
Credits:
 2
Mode of Delivery: Online
Semester Offered: Summer
Instructor: Dr. Nicholas Lux, College of Education, Health & Human Development

This class will provide educational technology professional development to practicing science teachers.  The purpose of the course is twofold.  First, the course will assist educators in effectively using the web to enhance their professional learning. Second, the course will assist educators in using web tools, many of which students are already comfortable with using in social settings, to enhance student learning and ownership.  The specific goals of this course include the following:

  1. Articulate a rationale for using Internet-based technology during instruction.
  2. Use a web aggregator and social bookmarking to increase efficiency in information gathering.
  3. Develop an initial personal learning network.
  4. Explore a variety of Web 2.0 tools and example projects, including blogs, wikis, Google Docs, Google Earth, podcasting, screen capture, and photo sharing services, for professional growth and enhancing instruction.
  5. Create a plan for integrating at least three Web 2.0 tools into current instructional efforts.
 

MSSE 503 Integrating Literature into the Science Classroom
Credits:
3
Mode of Delivery: Online
Semester Offered: Spring
Instructor: Joe Bradshaw, MSSE Department, MSU-Bozeman

Integrating Literature into the Science Classroom is a 14 week, 3 credit course. Cross-level instruction will be utilized for elementary, middle, and high school instructors. It provides an effective way to integrate master teaching strategies with current practices of teachers. The goal of this course is to engage and equip teachers in the area of science and literacy by integrating science-related literature into science classrooms. This course is intended for teachers enrolled in the Master of Science in Science Education degree program and other teachers with a minimum of two years teaching experience. The course supports the integrated approach to providing reading and science instruction.

Textbook: ISBN 0312422725 - Indian Creek Chronicles (Fromm) 2003, Picador
                  ISBN 0316881791 - Never Cry Wolf (Mowat) 2001, Black Bay Books
                  ISBN 1416985840 - George's Secret Key to the Universe (Hawking - S&S) 2007
                  ISBN 0516259555 - Fishes (Stewart - Scholastic) 2000

                  ISBN 0590689088 - Look to the North (George - Harp) 1998

The sixth required reading is a book of personal interest. Must have a science-related theme.

 
MSSE 504 Formative Assessment in Science Education
Credits:
3
Mode of Delivery: Online
Semester Offered: Fall and Spring
Instructors:
Dr. Jessi Anderson, MSSE Department, MSU-Bozeman
Dr. John Graves, MSSE Department, MSU-Bozeman 
Dr. Marcie Reuer, MSSE Department, MSU-Bozeman
Dr. Walt Woolbaugh, MSSE Department, MSU-Bozeman
 

Evaluation is an ongoing process in education. This course will engage teachers in an ongoing discussion and study regarding the construction, selection and use of criterion-referenced, norm-referenced, and alternative assessment methods. The teachers' own instructional settings (classrooms, museums, aquariums, outdoor schools, etc.) are used as "research bases" to conduct classroom assessment studies. The results of the assessments provide immediate feedback on both teacher effectiveness and student learning.

Textbook: ISBN 9781555425005 - Classroom Assessment Techniques (Angelo - Wiley)

 
MSSE 505 Foundations of Action Research in Science Teaching and Learning 
Credits: 3
Mode of Delivery: Online
Semester Offered: Spring
Instructors:
Dr. Jessi Anderson, MSSE Department, MSU-Bozeman
Dr. John Graves, MSSE Department, MSU-Bozeman
Dr. Marcie Reuer, MSSE Department, MSU-Bozeman
Dr. Walt Woolbaugh, MSSE Department, MSU-Bozeman
 

This course presents an overview of action research for practicing teachers and informal science educators. Students will explore the conceptual underpinnings of action research in science education as they relate specifically to curriculum, teaching and learning of science. Students will gain experience in data collection and analysis, and will prepare an action research proposal based on their individual teaching situation.

Textbook: ISBN 9781938946035 - The Basics of Data Literacy (Bowen & Bartley - NSTA Press)

AND ISBN 9781544324395 - Action Research: Improving Schools and Empowering Educators 6th ed. (Mertler - Sage)

 

MSSE 506 Crime Scene Investigators: Forensics Science for Teachers
Credits: 2
Mode of Delivery: 
Online
Semester Offered: 
Spring (even years)
Instructor:  
Dr. Marcie Reuer, MSSE Department, MSU-bozeman

This course will focus on developing an understanding of forensic science discipline that teachers can apply to the classroom. Topics covered will include blood, DNA analysis, fingerprinting, forgery, computer forensics, physical and trace evidence, ballistics and the autopsy process. Using critical thinking, science and engineering practices, science disciplinary content, case studies, forensics labs and more, teachers will plan and perform forensic investigations in their classrooms.  Join the class for an exciting learning experience to solve the crime!

 

MSSE 507 Capstone Data Analysis
Credits:
2
Mode of Delivery: Online
Semester Offered: Summer
Instructor: Dr. John Terrill Paterson, Department of Ecology, MSU Bozeman and Montana Fish, Wildlife and Parks

This course is designed to provide graduate students in science education with a background in basic descriptive and inferential statistics. By the end of the course, students will be able to choose the most appropriate method to both describe their data and display that data in a clear and concise manner. Students will be able to perform hypothesis tests using a variety of parametric and non-parametric methods with an understanding of the assumptions and limitations of each method as applied to the analysis of capstone data. Students will be able to perform one-way analysis of variance tests in addition to chi-square tests for categorical data. Through the examination of the appropriate use of each of these statistical tools, students will be able to better design their capstone projects so as to maximize the likelihood of addressing their research topics.

 
MSSE 508 Statistics Bootcamp for Capstone Projects 
Credits: 1
Mode of Delivery: Campus
Semester Offered: Summer

Instructor: Dr. John Terrill Paterson, Department of Ecology, MSU Bozeman and Montana Fish, Wildlife and Parks

This course is a practical introduction to data 'wrangling' for students in the MSSE program. Our goal is to give you a basic foundation in dealing with the sorts of data that arise from MSSE projects, point you in the right direction on how to talk about your data, ideas for data display and some suggestions for analysis. No background in statistics is expected or required, although we do expect basic math skills! This brief introduction will not relying on any programming skills. Specifically, we will:

  1. Show you how to use Google sheets as a basic database to securely store your data, vastly improving on Excel.
  2. Show you strengths and weaknesses of various methods to graphically display your data.
  3. Coach you through basic study design principles so that you know how to talk about your data in an intellectually honest way.
  4. Talk about the use of summary statistics such as mean, median and range to tell a story about your data.
  5. Discuss the perils and joys of more complicated statistical analyses.
  6. Provide a series of templates to help you analyze your data.
 
MSSE 509 Implementing Action Research in Teaching and Learning 
Credits:
3
Mode of Delivery: Online
Semester Offered: Fall
Instructors:
Dr. Jessi Anderson, MSSE Department, MSU-Bozeman
Dr. John Graves, MSSE Department, MSU-Bozeman
Dr. Marcie Reuer, MSSE Department, MSU-Bozeman
Dr. Walt Woolbaugh, MSSE Department, MSU-Bozeman
 

A course in the implementation of action research for practicing teachers. Students will learn how to effectively conduct action research based on their individual teaching situation and its implications for their professional development. Prerequisites are EDCI 504 Evaluation and Measurement in Education and EDCI 505 Foundations of Action Research in Science Teaching and Learning.

Textbook: ISBN 9781938946035 - The Basics of Data Literacy (Bowen & Bartley - NSTA Press)

AND ISBN 9781544324395 - Action Research: Improving Schools and Empowering Educators 6th ed. (Mertler - Sage)

Teacher Quote

The inquiry science notebooks are working amazingly in my classroom. My students are writing and exploring more than I ever would have asked them to. The students having ownership over the labs is really awesome. ~Florida Teacher

 

MSSE 518 Master Teaching Strategies for Science Teachers 
Credits:
3
Mode of Delivery: Online
Semester Offered: Spring (odd years)
Instructor: Dr. Kate Solberg, MSSE Department, MSU-Bozeman

Becoming a master teacher is a process. Once a teacher is comfortable with the content being taught and the overall curriculum, the focus can shift to instructional strategies. This course will engage students in discussions and practice regarding the construction, use and reporting of numerous master instructional techniques. The emphasis of the course is on classroom instruction with the intent of informing and improving the effectiveness of one's instruction. A classroom or teaching setting such as museum, planetarium, zoo, outdoor school in which to complete the required instructional "assignments" is absolutely necessary.

Textbook: ISBN 9780133749304 - Models of Teaching (Joyce - Pearson)

 

MSSE 536 Construction of Curriculum 
Credits:
 2
Mode of Delivery: Online
Semester Offered: Summer (odd years)
Instructor: Dr. Marcie Reuer, MSSE & Department of Education, MSU-Bozeman

So, you've been asked to participate on the science textbook selection committee. Perhaps you've been appointed to chair the committee to write your school's science curriculum or develop instructional materials for an informal science education setting such as a museum or zoo. If asked by an administrator or a parent, could you describe the curriculum you are currently teaching? All teachers talk ABOUT curriculum, but have you ever considered the factors that drive the construction of curriculum? This course examines the philosophical, historical, and social influences that drive the construction of curriculum. Emphasis is placed on science curriculum past, present, and future. Where did it start? How has it evolved? What is around the bend in the future? Current trends such as standards, inquiry, and high-stakes testing that influence curriculum will be considered in relationship to your own teaching experiences. After completing this course, science teachers will be equipped with a greater understanding of the workings of science curriculum development.

 

MSSE 537 Contemporary Issues in Science Education: The 3 D's of NGSS 
Credits:
2
Mode of Delivery: Online
Semester Offered: Summer (even years)
Instructor: Dr. Marcie Reuer, MSSE Department, MSU-bozeman

The course is designed to survey the three dimensions of the Next Generation Science Standards: science & engineering practices, crosscutting concepts and disciplinary core ideas.  Each dimension will be examined with emphasis on the interconnectness of the dimensions.  The course will help teachers of science, regardless of level or content, teaching in formal or informal settings to better understand the underpinnings of NGSS and to develop strategies to implement NGSS dimensions in their teaching. Weekly assignments include online readings, discussion among colleagues and reflection and application of the content.

Textbook: The Next Generation Science Standards: For States, By States. NGSS Lead States. 2013. Washington DC: The National Academy Press.

https://www.nap.edu/catalog/18290/next-generation-science-standards-for-states-by-states

 

MSSE 575 Professional Capstone Paper & Symposium in Science Education (Formerly EDCI 575)
Credits:
3
Mode of Delivery: Campus
Semester Offered: Summer
Instructor: Dr. John Graves, MSSE Director, MSU-Bozeman

Each Master of Science in Science Education (MSSE) student, with the cooperation of her or his graduate committee, identifies and completes a science education capstone project. Each project is designed to provide experience and information that aids our understanding of science teaching-learning or science curriculum. The capstone project topic is identified during the student's graduate program and relates to science education in the student's educational setting; it links multiple courses in the student's program of study in both the core and science content areas. A student begins the capstone in the fall of the final year by submitting a brief proposal to his/her advisor.

The results of each student's capstone project are summarized in a written, professional paper completed by mid-term of the final summer session. In addition, during the final summer session of a student's graduate program each student presents their capstone project to their committee, their classmates, and other interested persons at the Symposium in Science Education.

Electrical Engineering

EELE 508 Solar Cell Basics for Science Teachers
Credits: 
2
Mode of Delivery: Campus
Semester Offered: Summer
Instructor: Dr. Todd Kaiser, Electrical & Computer Engineering, MSU-Bozeman

Grant support is available from the Department of Electrical and Computer Engineering for ELEE 508 Solar Cell Basics.  To be considered for funding support, the MSSE graduate student must meet at least one of the following criteria: . 
1)      Graduate student is a member of an underrepresented minority and/or
2)      Graduate student teaches in a setting that serves a large population of underrepresented students
For more information, contact MSSE at [email protected]

Solar Cell Basics is a course for science educators, to train them to teach principles of solar cells. The course is designed to help science teachers, grades 6 to 12, understand the operating principles and the fabrication processes of modern solar cells that convert light energy to electrical energy. The course has a laboratory component in which solar cells will be fabricated in the Montana Microfabrication Facility (MMF). Each student will process 4 inch silicon wafers using the various steps necessary to make solar cells.

Participants should have an understanding of basic chemistry and physics principles.

Engineering

ECIV 562 Snow and Avalanche Physics for Science Educators

Credits: 3
Mode of Delivery: Online
Semester Offered: Fall (odd years)
Instructor: Ry Phipps, Department of Mechanical Engineering, MSU-Bozeman

This course begins with establishing the necessary background for understanding snow and avalanches. The course then progresses into methods for solving problems related to snow and avalanche mitigation including topics from route selection to explosives placement. This course is designed to educate the teachers in the basics of snow and avalanche physics such that they may apply what they learn in their own classrooms to excite their students about science and physics. The course requires comfort with simple mathematical calculations, independent research, and communication with your peers and instructor via the on-line interface.

 Textbooks: ISBN 9780898868098 - Avalanche Handbook (McClung)

                    and ISBN 9781680511383 - Staying Alive in Avalanche Terrain (Tremper)

 

EGEN 511 Engineering Methods for Teachers

Credits: 3
Mode of Delivery: Online
Semester Offered: Spring (even years)
Instructors: 
Dr. Todd Kaiser, Electrical & Computer Engineering, MSU-Bozeman

Dr. John Graves, MSSE, MSU-Bozeman

This course is designed to introduce the concepts of engineering technology design to equip teachers of science to meet and exceed emerging standards of teaching engineering process K-12. A balanced approach of engineering processes and educational pedagogy will be the cornerstones of the course.

Textbook: ISBN 978-1111645823 - Engineering Design, An Introduction 2nd edition. Karsnitz, O'Brien, Hutchinson, 2013

Health and Human Development

NUTR 526 Nutrition for Fitness and Performance
Credits: 3
Mode of Delivery: Online
Semester Offered: Spring

Instructor: Lindsay Kordick , HHD, MSU-Bozeman

Nutrition is a key element in managing body weight and fueling physical fitness and athletic performance. Food provides fluids, energy, nutrients, fiber, and phytochemicals. But what nutritional strategies are optimal? Which dietary supplements work? Using nutrition to meet the demands of physical activity is a dynamic process that integrates scientific research, nutrition guidelines, and the practical aspects of fueling active people in specific situations.

This nutrition science course examines the latest developments that link nutrition with physical fitness, sport performance, and health promotion. Resources include a text, course supplement, nutrition analysis software, peer-reviewed scientific literature, current news, and Internet resources. Participants contribute to asynchronous online discussions throughout each week. Expect to relate each week's topic to your areas of interest and expertise. A diverse group of participants (practicing teachers in various specialties, coaches, athletic trainers, nutrition educators, and other health professionals) ensures that discussions are interesting, lively, and challenging. Topics include energy, fluid, and nutrient needs for physical activity; nutrition around exercise (before, during, recovery); free radicals and antioxidants; dietary supplements; body composition; weight management; disordered eating; and the female athlete triad. Sport-specific nutrition strategies for endurance, team sports, strength training, and muscle mass gain are addressed. Controversial issues such as popular diets, nutrient timing, and sports supplements are addressed. Internet resources are used extensively.

Assignments challenge participants to apply evidence-based nutrition strategies to practical situations. Participants demonstrate competency in the following areas: locating credible nutrition resources on the Internet; accessing, analyzing, and evaluating nutrition information; and using nutrition analysis software to plan meals, snacks, and a personalized fitness menu. The course project is a written evaluation of a dietary supplement, a popular diet, or a dietary regimen. Reference material is obtained from medical, health, and scientific sources such as published, peer-reviewed scientific literature accessed via the National Library of Medicine databases. Participants demonstrate competency in a written project that involves assessment, analysis, comparison, evaluation, and synthesis of information.

MSU will provide you with a course supplement digitally, once the course is underway. 

Textbooks: Dunford M. & Doyle JA., Nutrition for Sport and Exercise 4th ed., Wadsworth 2019. Diet & Wellness Plus 1st ed., 2014. Text and software can be accessed via Cengage.com MindTap.

Course supplementation, which will be provided digitally by your instructor, includes a study guide, resourse list and course readings. Please log into the course 5 days before course begins.

Land Resources and Environmental Sciences

LRES 557 Thermal Biology in Yellowstone National Park
Credits:
2
Mode of Delivery: Campus
Semester Offered: Summer
Instructor: Dana Skorupa, Department of Chemical & Biological Engineering, MSU-Bozeman

Yellowstone National Park (YNP), one of the world’s largest active volcanos, is home to over 14,000 geothermal features which serve as unique ecosystems for many uncharacterized and uncultured extremophilic microorganisms. This course will introduce you to the unique Bacteria, Archaea, and Eukarya inhabiting YNP’s geothermal features. You will learn how microorganisms influence hot springs, contribute to the cycling of nutrients, and how these unique organisms are used in a variety of biotechnology applications. You will also visit Yellowstone’s geothermal systems on a two day field trip, and through your collective experiences, you will give a pitch presentation for a thermal biology instructional model. Finally, during laboratory sessions, you will be introduced to several thermal-biology related labs you may wish to modify and incorporate in your classroom.
Learning outcomes:

  • Explain how and why thermophilic microorganisms are important in geothermal environments
  • Identify relevant theory and methods for thermal biology teaching labs
  • Design a draft thermal biology instructional model using course content
  • Practice scientific oral communication

Physical Fitness Requirement: Field trips require walking distances of up to 5 miles with moderate slopes and will involve being in the field for the majority of the day. Camping in YNP will take place Monday and Tuesday nights. Weather may vary!

Textbook: Living Colors - Microbes of Yellowstone National Park (2015). Students are required to bring the Living Colors book and microbial wheel on our field trip to Yellowstone.

 

LRES 569 Ecology of Invasive Plants in the Greater Yellowstone Ecosystem
Credits:
2
Mode of Delivery: Campus
Semester Offered: Summer
Instructor: Dr. Bruce Maxwell, Department of Land Resources and Environmental Sciences, MSU-Bozeman

This five-day course includes 4 days taking data in the field making measurements on exotic invasive plants at a range of sites from the Gallatin Valley to the Gallatin National Forest. We take one full-day field trip to Yellowstone National Park. Each day starts with a 1-hour lecture introducing a subject area then the class goes to a different field site each day to collect data. Students return to the computer lab to analyze the data and answer questions about the observations/measurements. This course directly involves students in monitoring plant populations by contributing to long-term datasets and assessing the distribution, invasive potential and impact of several non-indigenous species in otherwise pristine mountain environments.

The questions that we will examine are:

  1. How does one determine the local distribution of a rare species?
  2. Can we detect change in non-indigenous plant populations that will allow us to judge them as invasive?
  3. What should be the criteria for determining if a non-indigenous plant species can have a significant impact on a plant community?
  4. What should be the criteria for determining if a non-indigenous plant species can have a significant impact on the ecosystem they inhabit?

Students will read the most current theories on what makes species invasive and what conditions invite or detour non-indigenous plant species. At least 1/3 of the field time will be used to discuss how these theories apply to our system.

Data analysis will place each student with a computer and include the use of Excel and R software. Each student will analyze a different portion of the field data. Integration of field ecology into K-12 classes will be discussed throughout the course. 

 
LRES 582 Streamside Science: Hands-On Approach
Credits:
3

Target Audience: 
Mode of Delivery: Online
Semester Offered: Summer
Instructor: Amber Hemphill, Department of Land Resources and Environmental Sciences, MSU-Bozeman

The primary goal of this course is to increase the water resource knowledge of students through hands-on, field-based curriculum. To accomplish this, students will be asked to adopt a local stream and perform lab assignments "in the field" to better understand hands-on water quality monitoring techniques. The course will improve the teaching skills of secondary science teachers utilizing distant delivery technologies. By completing this course, secondary science teachers will have a better understanding and hands-on working knowledge of the characterization and quantification of water quality as it relates to secondary school science curriculum and environmental issues on a global scale. Curriculum standards will be linked to each lesson plan so that teachers can easily incorporate the content into their core curriculum.

Required Textbook: Field Manual for Water Quality Monitoring (Mitchel & Stapp) ISBN 978-0757555466

Other lab materials will be sent to you by the MSSE office shortly before the beginning of the course. A fee of $175 will be charged to your student account to cover the cost of the materials. Items will need to be shipped back at the cost of the student. 

Students living abroad are not able to take this course due to shipping restrictions related to lab equipment.

 
LRES 583 Soil Science for Elementary and Middle School Teachers
Credits:
 1

Target Audience: Elementary and middle school teachers
Mode of Delivery: Online
Semester Offered: Spring (odd years)
Instructor: Dr. Suzanna Carrithers Soileau, Land Resources & Environmental Sciences, MSU-Bozeman

Kids love dirt and you can learn all about basic soil physical properties and processes in this exciting, interactive 6-week online course. Directed toward K-6 elementary school teachers who want to understand the science of "dirt," this course includes active discussion between your instructor and classmates in weekly online forums and creative lab activities easily adapted to your teaching situation.

The specific goals of this course are:

  • Expand your understanding of the concepts of soil science and use soil as a platform to teach other science disciplines such as biology, art, history and others.
  • Gain understanding of how soil is formed and getting dirty while discovering different soil textures.
  • Begin to understand your local soil/ landscape interactions.
  • Gain understanding of soil and water relationships.
  • Study how children's concepts of soil and land resources are developed in the classroom setting.
  • Strengthen skills in teaching basic soil science concepts, engaging students, and responding to student needs in the classroom.
  • Develop our own professional community of course participants, sharing teaching ideas, expertise and experience.

Required Textbook/Materials: Soil Science Simplified 5th ed. (Kohnke & Franzmeier) ISBN 13:978-1478629078; 10:47862907X https://www.amazon.com/Science-Simplified-Fifth-Donald-Franzmeier/dp/147862907X

You will be required to purchase/find soil related materials. You will be sent the list once the course is underway.

 
LRES 584 Soil Science for Middle and High School Teachers
Credits:
 3

Target Audience: Middle and high school teachers
Mode of Delivery: Online
Semester Offered: Fall (even)
Instructor: Dr. Suzanna Carrithers Soileau, Land Resources and Environmental Sciences, MSU-Bozeman

Playing with DIRT! At your age? Believe it or not, soil (to some known as "dirt") is part of all of our lives on a daily basis. And, as environmental issues such as water quality, waste management, ecological biodiversity, land resource carrying capacity, and alternative land uses continue to gain more attention from the public, increasing demands will be placed on earth science, physical science, geology, geography, and general science teachers for curriculum to support our understanding of these issues. Soil science is not a new science, but one that has gained much attention and interest in the past decade. And, the study of soil science has taken on new, "real-life" meaning and significance in the last decade. Today scientists spend a great deal of time studying the soil-like materials of distant planets, the remote reaches of the earth, and even under the ocean floors.

The goal of this course is to introduce teachers to the basic principles of soil science as an integral part of the curriculum for environmental sciences, ecology, earth science, geology, water quality, and geography. The course is structured around twelve basic soil concepts, beginning with the significance of soil in our everyday lives and progressing through soil formation, the physical and chemical properties of soils, and the role soil and the earth play in environmental management today and in the future. This course is filled with "how to" classroom teaching opportunities and resources. A good share of the course addresses contemporary issues and readings. We'll integrate teaching DIRT with math, language arts, geography, social studies, artistic expression, chemistry, physics, and biology.

You'll learn about the soil in your own school yard or back yard, who to contact to get local "experts" and how to get your students more interested in environmental studies. This course is "hands on", participation oriented.

What goes on in the DIRTY DOZEN?

  • Study the significance of soil and the processes involved in soil formation and differentiation (did you know that all soils have names and identities and more than 14,000 different "soils" are recognized in the United States alone?).
  • Learn how to use such readily available resources as National Geographic, Science, and other popular magazines to introduce students to soil science and develop lessons that are fun in the classroom.
  • Develop better understanding of the relationship between soil and water quality, crop and vegetation management, and environmental science.

Required Textbook/Materials: Soil Science Simplified 5th ed. (Kohnke & Franzmeier) ISBN 13:978-1478629078; 10:47862907X https://www.amazon.com/Science-Simplified-Fifth-Donald-Franzmeier/dp/147862907X

All other lab materials will be sent to you by the MSSE office. A fee of $70 will be charged to your student account to cover the cost of materials. If you live abroad, please notify us of your foreign address so that materials can be sent to you directly. MSSE at [email protected].

 
LRES 585 Water Quality
Credits:
3

Target Audience: Designed for secondary earth science, physical science, geology, geography, and environmental science teachers.
Mode of Delivery: Online
Semester Offered: Spring (even years)
Instructor: Dr. Suzanna Carrithers Soileau, Land Resources and Environmental Sciences, MSU-Bozeman

Today's science teacher faces challenges and issues, which were just beginning to gain attention 10, 15, or 20 years ago. And, teaching today's science requires both an integrated background and approach in the classroom. Water Quality: Teaching the Science of Water Quality in the classroom - is a 'must' course for teachers involved in any aspect of biological sciences. Water quality can be called an "integrating" science, in that it serves as a platform for expanded applications of chemistry, physics, biology, mathematics, geology, earth science, political and social sciences, and creative arts.

The Water Quality course has three central foci: 1) to increase student knowledge and assessment skills about the physical, chemical, and biological aspects of water quality investigations, 2) to develop and implement new pedagogies for teaching water quality concepts in the secondary school science classroom, and 3) increase student awareness and understanding of some of the more significant global water quality issues that will face science teachers and their students in the 21st century. This course teaches water quality concepts and how to demonstrate, explain, and teach them in the science classroom. Course format includes weekly "kitchen counter" experimentation, library and independent research, written homework, discussion.

Required Textbook: Field Manual for Water Quality Monitoring (Mitchel & Stapp) ISBN 978-0757555466

Other materials will be sent to you by Montana State University shortly before the beginning of the course. A $45 fee will be charged to your student account to cover the cost of materials. If you live abroad, please notify us of your foreign address so that materials can be sent to you directly. MSSE at [email protected].

 
LRES 586 Lake Ecology
Credits:
 2
Mode of Delivery: Online
Semester Offered: Summer

Instructor: Stephanie McGinnis, Department of Land Resources Environmental Science, MSU-Bozeman

This course provides an understanding of the physical, chemical, and biological processes that regulate lake
systems. Course topics include the origin of lakes, the ecology of aquatic organisms (e.g., bacteria,
phytoplankton, zooplankton, fish) with a focus on secondary production, food webs, and current environmental
issues such as eutrophication and climate change.

By the end of the course, expected learner outcomes are that students will 1) have a deeper understanding of
relationships among physical, chemical, and biological processes that influence lake dynamics, 2) understand
field sampling and taxonomic identification techniques to collect, qualitatively assess, and identify aquatic
invertebrate life within a pond/lake with their students, 3) understand the role of genetic identification of
organisms in aquatic ecology and how to incorporate this technology into their classroom, 4) effectively navigate
genetic database repositories and how to incorporate this into their classroom, 5) create and understand how to
incorporate the use of ecological conceptual models in their classroom, and 6) have the skills and knowledge to
implement lesson plans designed in this course appropriate for use in the student’s educational setting.

Textbook: ISBN-13:978-1478623076 / 10:1478623071 Textbook of Limnology, 5th Ed. Students will need the textbook prior to the start of class. If shipping time does not allow, please consider purchasing the e-book.

Mathematics

M 517 Modeling in a STEM World
Credits: 3
Mode of Delivery: Online
Semester Offered: Summer (even years)
For Teachers: Grades 9-14

Instructor:  Dr. Jennifer Leubeck, Mathematics Education, MSU-Bozeman

This course provides teachers with a sound understanding of modeling as a mathematical practice, as a context for teaching and reinforcing mathematics concepts, and as a means to integrate mathematics with other STEM disciplines.

Course goals include:

  • Examine the nature of mathematical modeling and how it compares to other types of problems and tasks. Discover how mathematical modeling is approached at different grade levels (e.g., elementary) and in different contexts (e.g., STEM disciplines).
  • Compare and contrast desirable habits of mind in mathematics, science, and engineering with a focus on modeling across STEM disciplines. Explore pedagogical practices that foster modeling in the context of effective STEM instruction.
  • Recognize the role of mathematics and modeling in a person’s ability to make the well-founded judgments needed by engaged and reflective citizens.
  • Solve a variety of modeling problems in mathematics and related STEM disciplines. Evaluate and critique lessons and tasks against mathematical modeling criteria.
  • Design activities and lessons that incorporate authentic (mathematical) modeling.
 

M 518 Statistics for Teachers

Credits: 3
Mode of Delivery: Online
Semester Offered: Summer
For Teachers: Grades 9-14

Instructor:  Dr. Jennifer Green, Mathematics Education, MSU-Bozeman

Stochastic concepts including probabilistic underpinnings of statistics, measures of central tendency, variability, correlation, distributions, sampling, and simulation. Exploratory data analysis including experiments, surveys, measures of association and inferential statistics. Discussion of methods for teaching statistics in secondary mathematics and science.

This course is designed to engage students using a modeling and simulation approach to inference. This course uses pedagogical principles that are founded in research, such as weekly small group discussion activities, in addition to the collection of weekly homework assignments. In this course, students will be exposed to numerous examples of real-world applications of statistics that are designed to help them think like statisticians and develop a conceptual understanding of statistics. Upon completion of this course, students should have an understanding of the foundational concepts of data, variation and inference, as well as an appreciation for the fundamental role that statistics plays in a host of disciplines, such as business, economics, law, and medicine.

Microbiology

MB 533 Current Topics in Microbiology 
Credits:
 3
Mode of Delivery: Online
Semester Offered: Fall
Instructor: Dr. Elinor Pulcini, Department of Microbiology, MSU-Bozeman

This course will provide an inquiry based examination of current microbiology related topics. Topics may vary from semester to semester and will be selected by the assessment of what is considered “newsworthy.”  Topics could include but not be limited to hospital acquired and community acquired infections, antibiotic resistance, immunizations, food safety and drinking water. Emphasis will be placed on the ramifications of issues with respect to industry, medicine, and personal health. A review of literature will provide background information for the topics in order to provide teachers sufficient and correct information to hold discussions regarding these topics in their classrooms. The goal of this course is to provide a rigorous examination of these topics for students in the Masters of Science in Science Education (MSSE) Program.

All materials are supplied in the course or as ejournals through MSU Library Proxy access.

 

MB 536 Exploring Microbiology
Credits:
3
Mode of Delivery: Online
Semester Offered: Spring
Instructor: TBD

The goals of the course are to provide science educators with fundamental knowledge of microbiology that will allow them to expand and enhance their teaching activities in this subject. Teachers will gain an appreciation of the biology of microorganisms through reading, web searches, assignments and discussions on the life and death of microorganisms, the microbial world and microorganisms in their environments. They will also learn how a fundamental knowledge and understanding of microbiology can be applied in daily life as well as in biotechnology and in studying complex issues such as the origins of life. The course will provide a sound grounding in microbiology for students who intend to take courses on infectious diseases and environmental microbiology.

Textbook: Prescott’s Microbiology, 11th ed., by Willey  (McGraw-Hill), ISBN # 978-0073402406. 9th and 10th editions are acceptable. OR eBook six month access ISBN10: 1259669939 | ISBN13: 9781259669934

 

MB 538 Cell and Molecular Biology
Credits:
2
Mode of Delivery: Online
Semester Offered: Summer
Instructor: Dr. Delisha Patel, MSU Department of Microbiology

An inquiry-based laboratory in prokaryotic and eukaryotic cell and molecular biology, this course provides training in microbiological techniques such as:

  • recombinant DNA
  • phylogenetic analyses
  • growth & cell cycle regulation
  • gene expression
  • protein purification
  • immunoassays

Current literature and laboratory discussions cover molecular approaches for investigating complex cellular mechanisms.

 

MB 539 Infection and Immunity
Credits:
3
Mode of Delivery: Online
Semester Offered: Spring
Instructor: Dr. Elinor Pulcini, Center for Biofilm Engineering, MSU-Bozeman

The fields of infectious disease and immunology have developed side-by-side, are closely intertwined, and are very active fields of research and practical medical application. Remarkable achievements in these fields have changed our lives. Some examples are the eradication of naturally acquired smallpox, the discovery and development of antimicrobial agents, and the development of vaccines that dramatically decrease the incidence of specific infectious diseases. But new challenges appear each year. We again worry about smallpox - now about the intentional release of this and other potential agents of bioterrorism. The emergence of drug-resistant microbes is an increasing problem. Previously undiscovered infectious agents are being described and associated with disease. The population of immune deficient humans is getting larger and the associated opportunistic infections are an increasingly important and difficult problem.

In this course, we will first address some basic aspects of microbiology as they relate to infectious disease. How are microbes different from each other and from humans, and why do these differences matter? How do antimicrobial agents kill or inhibit microbes without seriously harming humans? How do microbes acquire resistance to antimicrobial agents? Attention will then turn to the immune system, with emphasis on the roles of the immune system in infectious disease. Finally, and for about two-thirds of the course, we will examine important infectious diseases of humans: their causes, pathogenesis, epidemiology, diagnosis, treatment and prevention. In addition to assigned textbook and syllabus readings and online discussion, participants in the course will analyze scientific journal articles and solve case histories involving infectious disease and immunology.

 

MB 540 Environmental Microbiology
Credits:
3
Mode of Delivery: Online
Semester Offered: Summer
Instructor: Dr. Elinor Pulcini, Center for Biofilm Engineering, MSU-Bozeman

The course will provide students with fundamental knowledge of environmental microbiology. Through reading assignments and discussions on freshwater, marine, food and soil microbiology, students will gain an appreciation of how microorganisms maintain the biosphere in a balanced state. Students will also learn how this fundamental knowledge of microbial ecology has been exploited by man to remediate soils contaminated with toxic wastes and waters polluted with residential, industrial and agricultural waste.

Textbook: Prescott’s Microbiology, 11th ed., by Willey  (McGraw-Hill), ISBN # 978-0073402406. 9th and 10th editions are acceptable. OR eBook six month access ISBN10: 1259669939 | ISBN13: 9781259669934

 

MB 541 Microbial Genetics
Credits:
3
Mode of Delivery: Online
Semester Offered: Summer 
Instructor: Dr. Elinor Pulcini, Center for Biofilm Engineering, MSU-Bozeman

This course is designed to provide an understanding of the fundamentals of genetic processes in bacteria (prokaryotes). Why bacteria instead of higher organisms or eukaryotes?

1) The study of bacterial genetics has provided much of the understanding of fundamental genetic processes for all organisms, especially through the use of in vivo and in vitro genetic tools.

2) Prokaryotic genetics is somewhat simpler than eukaryotic genetics due to the organization of the cell, its genome and transfer of genetic information. However, the basic concepts such as transcription, translation, mutation, and recombination are similar if not identical in all organisms.

3) The short generation time of bacteria lends themselves to genetic studies. Bacterial genetics labs are becoming easier to use, are relatively inexpensive and provide an ideal platform for genetic studies in the secondary school setting. It is critical that science teacher, then understand the fundamental processes of genetics particularly as they apply to microorganisms.

 

MB 542 Microbial Ecology
Credits:
3
Mode of Delivery: Online
Semester Offered: Fall
Instructor: TBD

This course will provide students with fundamental knowledge of microbial ecology and its methods. The ecology of microorganisms in relation to nutrition, growth, control, metabolism, biogeochemical cycling, natural environments and microbial interactions will be covered. Readings from the text and other sources, discussions, and assignments will be included to facilitate learning and for evaluation. This course is intended for middle, high school, and lower level college teachers, as well as others in education roles e.g. at nature facilities such as zoological and national parks.

Required Textbook: Prescott’s Microbiology, 11th ed., by Willey  (McGraw-Hill), ISBN # 978-0073402406. 9th and 10th editions are acceptable. OR eBook six month access ISBN10: 1259669939 | ISBN13: 9781259669934

Physics

PHSX 405 Special Relativity
Credits:
3
Target Audience: 9-12 grade teachers
Mode of Delivery: Online
Semester Offered: Fall

Instructor: Dr. Gregory Reinemer, Department of Physics, MSU-Bozeman

This course seeks answers to the questions: In what ways does Nature behave differently at high relative speeds than at low speeds? Do moving clocks really "run slow"? Do fast-moving objects really shrink and get heavier? Why can't we move faster than light? Why can't we travel backward in time? Can mass really be converted into energy and energy into mass? What does it mean to say that space and time are part of a larger unity called spacetime? And what predictions do all these statements make for actual experiments? Developing skills in answering these questions will help you to pose and answer your own questions, assisted by interactive visual computer software.

Textbook: Spacetime Physics, Introduction to Special Relativity, 2nd Edition (Taylor and Wheeler).   ISBN-13: 978-0716723271. ISBN-10: 0716723271.  Also can be downloaded free at https://www.eftaylor.com/spacetimephysics/

 
PHSX 497 Conceptual Physics
Credits:
3

Target Audience: Middle and high school teachers
Mode of Delivery: Online
Semester Offered: Summer
Instructor: Ben Spicer, MSSE, MSU-Bozeman

This course investigates many of the fundamental concepts of physics and their relevance to the world around you.  Topics include measurement, motion, force, energy, electricity, magnetism, waves, light, atoms, and nuclei.  The course is designed for students who are familiar with basic algebra, but may have never taken a physics course.  Students will engage with each concept using guided inquiry with online simulation labs, quizzes, and peer discussion.

At the end of this course a student should be able to:

  • Demonstrate a foundational understanding the fundamentals of physics
  • Identify and explain common phenomena using conceptual models of physics
  • Engage in productive dialog with other science teachers about the relevance of a conceptual understanding of physics

Textbook: Physics: A Conceptual World View, 7th ed., Kirkpatrick and Francis, (Thomson-Brooks/Cole, 2010) ISBN: 0-495-39152-2

 
PHSX 511 Astronomy for Teachers
Credits:
3

Target Audience: Middle and high school teachers
Mode of Delivery: Online
Semester Offered: Fall
Instructor: Lynn Powers, MSSE, MSU-Bozeman

Astronomy has long been a subject that captures the imagination of young students and provides a framework for teaching many kinds of science. This course, specially designed for practicing science teachers at the middle and high school levels, serves as a survey of topics in astronomy, with special emphasis on the latest advances. The topics are closely aligned with the concepts emphasized in the NRC National Science Education Standards. Our textbook is a very complete, very up-to-date, very readable source that teachers will want to keep as a reference. Students are responsible for acquiring the textbook in time for the first day of class -- see below for details. Our instructional strategy focuses on readings from the textbook, exercises that clarify the concepts and collaborative internet group discussions that correct misunderstandings and deepen insights.

Textbook: ISBN-10: 1319039448, ISBN-13: 978-1319039448 - Universe, 11th Edition (Freedman - Macmillan)

 
PHSX 512 General Relativity
Credits:
3
Target Audience: High school teachers
Mode of Delivery: Online
Semester Offered: Spring
Instructor: Dr. Tsunefumi Tanaka, MSSE, MSU-Bozeman

Prerequisites: Undergraduate calculus-based physics course(s)

What do we mean by "curved spacetime"? As you freely fall toward a black hole, how long does it take to reach the event horizon according to your watch? Can your friend at a safe distance actually see you fall into the black hole? What will you see inside a black hole?  What will happen at the central crunch point? Is it possible to travel through a black hole to another universe?

Einstein’s theory of general relativity gives you answers to these questions. General relativity is a theory ofspacetime geometry. One way of describing geometry of spacetime is the distance between two points, calledthe line element. Starting from the line element and using some math, you can answer every possible question about trajectories of light and particles around the black hole as well as around familiar gravitating bodies, such as the Earth and Sun. Also, there is a line element describing the entire universe. The line element can tell ushow the universe expands and ends.

The course begins by examining the idea of spacetime curvature and the Schwarzschild line element for a non-rotating black hole. With the line element we calculate the trajectories of light and particles inside and outside the black hole. We will be exploring event horizons, singularity, Hawking radiation, and rotating black holes. In the second half of the semester, we will apply general relativity to the entire universe. We will learn the Big Bang, forms of energy driving the expansion of the universe, different cosmological models, and how our universe will end.

NOTE: Participants should have good math skills, especially in calculus. They should know how to find a maximum and a minimum of a function and should be able to integrate polynomial functions. Also, participants need to be familiar with quantization of light energy (Planck relation), Heisenbergun certainty principle, time dilation, length contraction, relativistic energy, and other basic principles in modern physics. Some knowledge of astronomy would be helpful.

Textbooks: 

Exploring Black Holes: Introduction to General Relativity (Wheeler, Taylor - Addison, Wesley) ISBN 9780201384239 You can download Exploring Black Holes from the author's website - free download

AND

An Introduction to Modern Cosmology, 3rd Ed (Liddle - Wiley)- ISBN-10: 1118502140 or ISBN-13: 978-1118502143

 
PHSX 513 Quantum Mechanics Online
Credits:
3
Target Audience: High school teachers
Mode of Delivery: Online
Semester Offered: Summer
Instructor: Dr. Mingzhen Tian, MSSE, MSU-Bozeman

Prerequities: You are expected to have had an introductory physics course and possess a working knowledge of elementary differential and integral calculus.

In the conventional teaching of quantum mechanics, there are  three well-accepted and equivalent approaches: Schrödinger’s  wave  mechanics, Heisenberg’s matrix mechanics, and Feynman’s path integrals. In a college textbook, learning any  of  the  three  will heavily rely on well-versed math knowledge no less  than linear algebra and/or partial differential equations. Amazingly, Richard Feynman was able to summarize his approach to a simple command  that all quantum  particles, such as  photons and electrons, should  "Explore  all paths".  In his popular book, QED, The Strange Theory of Light and Matter, he explained this idea and how to use it to study a quantum particle’s behavior using just vector addition and multiplication.

In this course, we will begin with Feynman’s book to learn and practice his idea of explore all-paths. Then, we will expand this idea to study the difference between the paths taken by quantum and classical particles. Finally,  we will further  explore  how  a  quantum  particle propagates  in space  and time, which will lead us to the wave function. These will be achieved without  solving  equations. Instead, we will use simulation software modules developed based on explore-all-paths  to study  quantum  particles in different settings including those presented in Feynman’s book. The  homework assignments are mainly simulation based as well. We will also use an online discuss forum where we can exchange thoughts, questions, and comments related to the subject. 

Textbooks: QED, The Strange Theory of Light and Matter (Feynman - Princeton University Press). There are three editions so far. (1985,  2006,  and 2014).  A copy of any of these will work. 

 
PHSX 514 Comparative Planetology
Credits:
3

Target Audience: K-12 science teachers
Mode of Delivery: Online
Semester Offered: Fall
Instructor: Jason Marcks, MSSE, MSU-Bozeman

Is there ice on Mercury? Why isn't Pluto a planet? As viewed by the modern astronomer, the Solar System includes more than 100 diverse worlds interacting as a dynamic system. This online course for K-12 in-service teachers focuses on fundamental questions driving NASA's exploration of the Solar System: How did it form? What's in it? How is it arranged? What does the study of other worlds (planets, moons, asteroids, and comets) teach us about our own? How do we learn about other worlds? How are these worlds similar and different? How do they interact, forming mini-systems within the Solar System? What are their surfaces, atmospheres, and interiors like, and how do we know? By taking advantage of NASA's virtual presence in the Solar System, course participants will learn about the "new" Solar System and how to engage their students in the wonder ofexploration.

Online resources will be provided in the course. No textbook required.

 
PHSX 571 Electric Circuits & Magnetism
Credits: 2
Mode of Delivery: Online
Semester Offered: Summer

Instructor: Ben Spicer, MSSE, MSU-Bozeman

This course is designed for practicing teachers who are teaching basic electric circuits as part of the science curricula in their classrooms. Its broad purpose is to introduce experienced teachers to core concepts in electric circuits, as those ideas relate to modern hands-on, inquiry-oriented science curricular materials. By helping teachers improve their understanding of the underlying physics, this course will enable them to teach electric circuits more effectively. The specific course goals are as follows:

  • To deepen teachers understanding of basic physics principles underlying electric circuits.
  • To enhance teachers ability to convey concepts of electric circuits through inquiry approaches to learning.
  •  To encourage the sharing of resources and pedagogical methods among course participants.
  • To strengthen teacher knowledge and confidence in teaching electric circuits, and to develop their ability to critically analyze and use commercially available resources.
  • To briefly introduce magnetism, differentiating electric charge and magnet poles and observing the connection between an electric current and a magnetic field.

This course will be taught as an online, D2L-based course involving significant student/instructor and student/student interaction, student team participation in course homework assignments, and independent study. The time commitment is anticipated to be approximately 11-12  hours per week for eight weeks. Course work will involve a mixture of online discussion, hands-on (lab-type) activities, readings from assigned and independently researched sources, and on-line quizzes.

Required Materials: All lab materials will be sent to you by the MSSE office. A fee of $101 will be charged to student accounts to cover the cost of materials. If you live abroad, please notify us of your foreign address so that materials can be sent to you directly. Contact MSSE at [email protected].

 

PHSX 572 Space Science for Elementary Teachers

Credits: 1
Target Audience: K-6 grade teachers. Others are welcome but labs/activities are appropriate for k-6 classrooms.
Mode of Delivery: Online
Semester Offered: Fall (odd years)

Instructor: Jason Marcks, MSSE, MSU-Bozeman

The Sun rises, the Sun sets. There must be more to life than that. There is. The patterns of day and night - of the Sun, Moon, planets, and stars - are complex and wonderful. Some are very easy to figure out if you have the right tools; others take a bit of practice. All can be studied at different levels, and so can be used for different grade levels and for the focus of scientific inquiry.

This course is intended for elementary school teachers who use hands-on curricula. The topics include the Moon and lunar phases, patterns and changes in the night sky, the Sun’s appearance over the day and over the year at different locations on Earth, and some keys to understanding the surface patterns of planets and other worlds in our Solar System. Throughout the course are ways of learning about student ideas, limitations, and misconceptions. Each week, participants work through a selection of activities and contribute to asynchronous online discussions. The available activities focus on each week’s topic, but each participant is encouraged to choose activities that will best contribute to her or his own learning and teaching needs. Many of the activities parallel student activities in popular space science curriculum kits, though most are geared for adult learners. At the same time, participants experience a long-term observation-based inquiry. Discussions provide a way for participants to learn about a wide assortment of activities, exchange tips and ideas, and bounce thoughts and questions off colleagues as they work through their own understandings.

Participants examine and deepen their own understanding of space science, uncover and correct misunderstandings, and explore different ways of learning particular topics. In doing so, participants gain skills to support inquiry-based learning and guided kit use among their students. Resources include a Teacher’s Guide, star wheel, and access to templates participants and their students can use to make tools to understand space science. Internet resources are used throughout the course. Activities use household materials.

Online resources will be provided in the course. No textbook required.

 
PHSX 573 The Science of Sound for Teachers
Credits: 2
Target Audience: Elementary and middle school science teachers
Mode of Delivery: Online
Semester Offered: Spring

Instructor: James Vanides, MSSE, MSU-Bozeman

In this exciting seven-week online course we will investigate principles of Sound. Conducting and observing hands-on, “ears-on” science is easy and fun! You will record the principles you learn in a science notebook and share your investigations with other teachers through collaborative assignments and weekly discussions. This is a course that allows you to play as you learn.

By participating in this course, you will...

  • Have a clearer conceptual understanding of how sound works and what it is.
  • Know how to examine sounds by looking at the whole "sound system" (force vibration, medium, receiver).
  • Learn about sound energy and how it moves through a medium.
  • Examine how the properties of materials affect the sounds you hear.
  • Learn about ears and how they work.
  • Experience the true Scientific Method and collaboration.

This is a conceptual physics course that is designed especially for elementary and middle school teachers with little or no formal training in science. Teachers with significant previous experience teaching physical science are welcome, but are encouraged to contact MSSE for more information at [email protected]

Required Textbook/Materials: All reading materials will be found in D2L. Lab kit materials will be sent to you by the MSSE office shortly before the beginning of the course. A fee of $80 will be charged to your student account to cover the cost of the materials. 

Students living abroad may not beable to take this course due to shipping restrictions related to lab equipment.

 
PHSX 574 World of Motion
Credits: 1
Target Audience: 3-8 grade teachers
Mode of Delivery:
Online
Semester Offered: 
Summer

Instructor: James Vanides, MSSE, MSU-Bozeman

In this fast-moving six-week course, we will focus on the fascinating concepts of measurement and motion, and how they relate to hands-on physical science in the elementary classroom.

The goals of this course are to…

  • Gain a thorough understanding of the concepts of velocity and acceleration, central to a description of motion
  • Learn how to describe motion graphically and using data tables
  • Study how children’s concepts of motion are developed in the classroom setting
  • Become more effective users of inquiry-based curricular materials in teaching about motion
  • Learn about supplementary materials that help connect motion concepts to Native American cultures and communities
  • Develop our own professional community of course participants, sharing teaching ideas, expertise and experience

Online resources will be provided in the course. No textbook required.

 
PHSX 576 World of Force
Credits: 1
Target Audience: 4-8 grade teachers
Mode of Delivery:
Online
Semester Offered: 
Summer

Instructor: James Vanides, MSSE, MSU-Bozeman

This course is designed for 4-8 grade teachers who are exploring the concepts of forces in their classrooms. Its broad purpose is to introduce elementary and middle school teachers to core ideas about forces, as they relate to modern hands-on, inquiry-oriented science curricular materials. The course aims to help teachers use such materials more effectively by increasing their understanding of physics concepts, especially as those concepts may emerge in a classroom engaged in hands-on active learning. It is not a course in how to use a particular curriculum.

 The goals of this course are to

  • Gain a thorough understanding of the concept of force and the different kinds of force
  • Develop expertise in representing forces with free-body diagrams
  • Gain a thorough understanding of the relationship between forces and Newton's three laws of motion
  • Understand how forces determine the conditions for balancing
  • Learn how forces explain the operation of simple machines such as pulleys and levers
  •  Study how children's concepts of force, torque, and work are developed in classroom settings
  • Become more effective users of inquiry-based curricular materials in teaching about forces
  • Develop your own professional community of course participants, with whom you can share teaching ideas, expertise, and experience. 

Most materials will be provided online while you might be asked to obtain other materials on your own.

 
PHSX 582 Astrobiology for Teachers
Credits:
3
Target Audience: Middle and high school teachers
Mode of Delivery: Online
Semester Offered: Spring
Instructor: Dr. Sanlyn Buxner and Elise Bostic, MSSE Department, MSU-Bozeman

Astrobiology is the study of the origin, evolution, distribution, and destiny of life in the universe. It defines itself as an interdisciplinary science at the intersection of physics, astronomy, biology, geology, and mathematics, to discover where and under what conditions life can arise and exist in the Universe. The course topics will cover the discovery of planetary systems around other stars, the nature of habitable zones around distant stars, the existence of life in extreme environments. These concepts will serve as a foundation to study possible extraterrestrial ecosystems on places in the solar system like Mars and Europa. Students will also investigate the methods used in the ongoing search for extra-terrestrial intelligence (SETI) and search for Earth-like planets. The overarching theme of the course will be to help participants gain a fundamental conceptual understanding of the central topics of astrobiology and to empower teachers to bring these topics into their classroom by proving experiences using the instructional activities aligned with the Next Generation Science Standards, Framework for K-12 Education, and the National Academies Astrobiology Science Strategy for the Search for Life in the Universe.

Required Textbooks: 

Life in the Universe, 4th Edition  ISBN-13: 978-0-13-408032-1 (digital) or ISBN-13: 978-0-13-428762-1 (loose leaf) are the most inexpensive options. 3rd edition is also acceptable

AND

Activities Manual for Life in the Universe, 2nd edition ISBN-13: 9780805317121

Other reading materials:
NASA's Astrobiology Strategy: http://nai.nasa.gov/roadmap/
A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas (2012): http://www.nap.edu/catalog.php?record_id=13165# (free download)
 

PHSX 585 Physics by Inquiry: Electric Circuits 
Credits:
3
Mode of Delivery: Campus
Semester Offered: Summer
Instructor: Dr. Greg Francis, Department of Physics, MSU-Bozeman

Physics 585 is entirely laboratory based. Instead of absorbing facts from a lecture, the students make observations and build scientific models to account for their observations. The course emphasizes the development of basic concepts and reasoning skills, and efforts are made to actively engage students in the learning process. Staff-to-student ratio is of necessity high (two instructors for approximately 14 students), and interactions with staff are through Socratic dialog: the instructors do not give answers, but help the students to find their own. Available computer technology is utilized as appropriate.

Physics 585 will begin with a series of activities/observations that will lead to the development of a scientific model for DC electric circuits. The students will be able to solve both qualitative and quantitative problems involving very complicated circuits containing batteries and bulbs. For example, they will be able to rank the brightness of the identical bulbs without relying on the rote use of equations.

The in-service teachers will also make careful observations of the moon, and from their observations piece together a model to explain the phases of the moon.

The curriculum used will be the Physics by Inquiry modules developed by the Physics Education Group at University of Washington. This curriculum is based on two decades of research on student misconceptions. Each activity is designed to elicit those misconceptions known to block learning, and to allow the student to confront and resolve the difficulties. Students are often presented with several opportunities to confront the same misconception in increasingly rich contexts to insure that they are completely free of the misconception. This teaching approach has a three-fold advantage when used with future teachers: 1) They come away from the class with a clear understanding of the physics based on their own experience; 2) They acquire an awareness of those difficulties with which their future students are likely to be struggling; 3) Most importantly, they acquire a self-confidence in their ability to do science, to face unknown situations and find their own answers. Their teaching will be free of references to higher authority. They will be able to predict the time of the high tide (a skill more useful in other states) by looking at the phase of the moon and using their model. And it will be their model because they will build it for themselves, from the ground up.

Required Textbook: ISBN 978-0471144410 - Physics by Inquiry Vol 2 

 

PHSX 586 Physics by Inquiry: Heat and Temperature 
Credits:
3
Mode of Delivery: Campus
Semester Offered: Summer (odd years)
Instructor: Dr. Greg Francis, Department of Physics, MSU-Bozeman

Physics 586 is entirely laboratory based. Instead of absorbing facts from a lecture, the students make observations and build scientific models to account for their observations. The course emphasizes the development of basic concepts and reasoning skills, and efforts are made to actively engage students in the learning process. Staff-to-student ratio is of necessity high (two instructors for approximately 14 students), and interactions with staff are through Socratic dialog: the instructors do not give answers, but help the students to find their own. Available computer technology is utilized as appropriate.

The course will explore the differences between the concepts of heat and temperature. This will include a study of heat capacity, specific heat, phase change, and heat transfer. The in-service teachers will also conduct a careful investigation of light, color, and geometrical optics.

The curriculum used will be the Physics by Inquiry modules developed by the Physics Education Group at University of Washington. This curriculum is based on two decades of research on student misconceptions. Each activity is designed to elicit those misconceptions known to block learning, and to allow the student to confront and resolve the difficulties. Students are often presented with several opportunities to confront the same misconception in increasingly rich contexts to insure that they are completely free of the misconception. This teaching approach has a three-fold advantage when used with future teachers: 1) They come away from the class with a clear understanding of the physics based on their own experience; 2) They acquire an awareness of those difficulties with which their future students are likely to be struggling; 3) Most importantly, they acquire a self-confidence in their ability to do science, to face unknown situations and find their own answers. Their teaching will be free of references to higher authority.

Textbook: ISBN 978-0471144403 - Physics by Inquiry Vol 1

 

PHSX 587 Physics by Inquiry: Optics 
Credits:
3
Mode of Delivery: Campus
Semester Offered: Summer (even years)
Instructor: Dr. Greg Francis, Department of Physics, MSU-Bozeman

Physics 587 is entirely laboratory based. Instead of absorbing facts from a lecture, the students make observations and build scientific models to account for their observations. The course emphasizes the development of basic concepts and reasoning skills, and efforts are made to actively engage students in the learning process. Staff-to-student ratio is of necessity high (two instructors for approximately 14 students), and interactions with staff are through Socratic dialog: the instructors do not give answers, but help the students to find their own. Available computer technology is utilized as appropriate.

The course will begin with a careful investigation of geometrical optics, leading to an understanding of pinhole cameras, lenses, and prisms. This will be followed by an exploration of magnetic interactions and magnetic materials.

The curriculum used will be the Physics by Inquiry modules developed by the Physics Education Group at University of Washington. This curriculum is based on two decades of research on student misconceptions. Each activity is designed to elicit those misconceptions known to block learning, and to allow the student to confront and resolve the difficulties.

Required Textbook: ISBN 978-0471144410 - Physics by Inquiry Vol 2 

 

PHSX 595 Teaching Mechanics Using Research-Based Curriculum 
Credits:
 2
Mode of Delivery: Campus
Semester Offered: Summer (odd years) 
Instructors: Dr. Greg Francis, Department of Physics, MSU-Bozeman

The goal of this five-day course is to prepare participants to teach an mechanics integrated course built around Tutorials in Introductory Physics (McDermott, et al.). This research-based curriculum was designed to be used in recitations to augment traditional lecture courses operating essentially independent of the lecture. As a test site for this curriculum, Francis has taken the next step by totally redesigning his courses so that the lectures in fact serve to supplement the tutorials. The course will model both the student-centered tutorial instruction and the supporting active-engagement lectures for a selection of topics from the first semester of the two-semester sequence. A special emphasis will be placed upon training of peer-instructors for the effective use of the Tutorials. Participants will receive 70 PowerPoint lectures, each with its own description and learning outcomes, designed to engage the students in active learning and provide the necessary links to the Tutorial experience. A complete description of supporting demonstrations will also be provided. Finally, participants will receive a large bank of research-based homework and exam questions designed specifically to elicit the common misconceptions addressed in the Tutorials.

 

PHSX 596 Teaching Electricity and Magnetism Using Research-Based Curriculum
Credits:
 2
Mode of Delivery: Campus
Semester Offered: Summer (even years) 
Instructor: Dr. Greg Francis, Department of Physics, MSU-Bozeman

Many science teachers feel more comfortable teaching mechanics than the more abstract concepts of electricity and magnetism. This is unfortunate, as the application of these principles can be so much more exciting that the block-down-the-inclined-plane types of problems treated in mechanics. Students can be taught how to wire their own home or build electric motors.

This five-day course uses essentially the same mode as in "Teaching Mechanics Using Research-Based Curriculum", except that the topics covered will come from the second semester of the typical introductory physics sequence. Participants will learn how to teach an integrated course built around Tutorials in Introductory Physics (McDermott, et al.). This research-based curriculum challenges students to confront their misconceptions and build gut-level models of the key concepts of electricity and magnetism. The course will showcase both the student-centered tutorial instruction and the supporting active-engagement PowerPoint lectures. We will also review the physics education research literature that provides the foundation for these curricular materials.

Participants will receive 70 PowerPoint lectures, each with its own description and learning outcomes, designed to engage the students in active learning and provide the necessary links to the Tutorial experience. A complete description of supporting demonstrations will also be provided. Finally, participants will receive a large bank of research-based homework and exam questions designed specifically to elicit the common misconceptions addressed in the Tutorials.

Instructor: Dr. Francis is the director of the MSSE Program and a Professor in the Department of Physics at Montana State University, where he teaches algebra-based physics in classes of up to 210 students per section. Over the last several years, he has developed a relatively low-budget, high-impact program of physics instruction that is producing gains on the Force Concept Inventory (a widely used test of conceptual understanding in basic mechanics) that are as good or better than lab-based programs that, by their design, require resources that are simply not available to many physics instructors. In addition, a study demonstrating a high long-term retention rate (“Do They Stay Fixed?” The Physics Teacher, 36(8), p. 488 (1998).) suggests that the program is doing much more than training them to give the right answers—it is changing their world view.

 
PHSX 597 Physics of Renewable Energy for Secondary Teachers
Credits: 3
Mode of Delivery: Online
Semester Offered: Summer

Instructor: Dr. Nicholas Childs, Department of Physics

This course is intended to provide secondary physics teachers with a connection between topics in renewable energy sources to Next Generation Science Standards in physics. The goal of the course is to improve their pedagogical knowledge related to teaching the physics associated with renewable energy sources. Students will focus on developing classroom materials related to the subject.

During this online course, participants will complete a series of online units centered on bringing the physics of renewable energy sources into a high school physics classroom. Students will develop an understanding of the underlying physics associated with renewable energy sources. As this course is intended for secondary classroom teachers, instruction will place an emphasis on creating classroom materials appropriate for secondary science classrooms and consistent with the Next Generation Science Standards. Energy sources covered include power derived from nuclear fusion/fission, wind, solar, geothermal, hydro, hydrogen, biomass and water waves. World energy consumption and energy storage will also be covered.

      Objectives - Secondary physics teachers who successfully complete this course will be able to do the following:

1. Describe the current and projected world energy usage.

2. Describe the necessity of renewable energy sources.

3. Explain how energy is obtained from various renewable energy sources covered in the course.

4. Demonstrate mastery of underlying physics concepts utilized in renewable energy sources covered in the course.

5. Identify Next Generation Science Standards associated with topics in renewable energy.

6. Show the ability to incorporate the underlying physics of renewable energy sources into the teaching of introductory level physics.

Required Textbook: ISBN: 9780262017473 - Sustainable Energy: Choosing among options, 2nd edition (Tester & Drake)

Plant Sciences & Plant Pathology

PSPP 521 Plant Science for Teachers: It Grows on You
Credits: 1
Target Audience: K-12 grade teachers
Mode of Delivery: Online
Semester Offered: Summer

Instructor: Joe Bradshaw, MSSE and Ecology Department, MSU-Bozeman

This course will look at familiar seeds and their early growth into seedlings (with experimentation with the seedlings). You will  grow the little mustard known as Brassica, the Wisconsin Fast Plant. It is called the fast plant because it goes from seed to seedling to mature plant with flowers and fruits, and back to seed, in six weeks. In order to get the plant to grow satisfactorily, you must have a grow-light (shipped as part of your  materials) that can be on 24/7 (24 hours a day all week) for the entire six weeks, and you must get the seeds planted on Day 0.
The goals of this course are to...

  • Watch seeds germinate
  • Learn about uptake of water in seeds
  • Think about seeds as food
  • Observe how plants respond to gravity
  • Learn the parts of a flower
  • Act like a pollinating bee
  • Watch a flower part turn into fruit with seeds

You will keep journals with growth data, answer questions from the instructor based on your journals and the manual, and participate in discussions. If you are already familiar with Wisconsin Fast Plants, you can either participate in this class with more experimentation with your plants.

Required Textbook: Botany for Gardeners, 3rd Edition, by Brian Capon. ISBN 978-1604690958

Materials:

  • Basic Seed Set. Item # 157950. This can be ordered at Carolina.com for approximately $15.
  • Wisconsin Fast Plants Trial-sized Get Acquainted Kit. Item #158690. This can be ordered at Carolina.com for approximately $13.
  • Individual plant light. Item #666900. This can be ordered at Carolina.com for approximately $28. You can use your own florescent blub.

 

PSPP 522 Insect-ology
Credits: 3
Target Audience: K-12 grade teachers
Mode of Delivery: Online
Semester Offered: Summer

Instructor: Joe Bradshaw, MSSE and Ecology Department, MSU-Bozeman

This exciting course is designed for elementary to high school teachers. The course provides an effective way to integrate instructional scientific strategies for teachers. Students will share cross-level instruction and constructive ideas. The goal of this course is to promote the study of insects and applications of insects. Teachers may use this eight-week course for their science professional development.
 
Required Textbooks: 

How to Know the Insects by Roger G. Bland and H.E. Jaques; WavelandPr Inc; 3 edition, May 1, 2010.
ISBN-10: 1577666844
This book can be purchased at Amazon.com for approximately $38.
OR
Kaufman Field Guide to Insects of North America by Kenn Kaufman and Eric Eaton, (2007)
ISBN-10: 0618153101 approximately $16.00 on Amazon.com.

AND

Journey to the Ants: A Story of Scientific Exploration by Bert Holldobler and Edward O. Wilson, Belknap Press of Harvard University Press; First Edition (July 21, 1998);
ISBN:0674485262
This book can be purchased at Amazon.com for approximately $18.

Insect Mythology by Gene Kritsky and Ron Cherry, Writers Club Press; 1st edition (December 18, 2000);
ISBN: 0595150179
This book can be purchased at Amazon.com for approximately $11.

Wicked Bugs: The Louse That Conquered Napoleon's Army & Other Diabolical Insects; by Amy Stewart, Algonquin Books, 2011,
ISBN:1565129601
This book can be purchased at Amazon.com for approximately $11.

From Forestry Suppliers
Heavy-Duty Sweep Net
Approximately $37.

 

PSPP 547 Biomimicry: The Technology of Biology 
Credits:
 2
Mode of Delivery: Online
Semester Offered: Spring
Instructor: Robyn Klein, Department of Plant Sciences & Plant Pathology and MSSE, MSU-Bozeman

Grades 7-12 teachers will:

a.  Practice biomimicry, a design tool that can be used to inspire technological innovation and bring relevancy to science curriculums. 
b.  Learn how biology can inform design for diverse industry disciplines such as engineering, architecture, chemical products, land management and communications.
c.  Apply these skills to biology, chemistry and physics science courses for grades 7 to 12.

Skills needed for this course :

A sense of adventure and wonder
A love of nature
An ability to cooperate with a group
An appreciation of patterns and beauty
A willingness to step out of your comfort zone

Textbook: The Biomimicry Resource Handbook (hardcopy recommended), available at: https://biomimicry.net/product/biomimicry-resource-handbook-hardcopy/

 

PSPP 548 Flowering Plants of the Northern Rocky Mountains
Credits:
2
Mode of Delivery: Campus
Semester Offered: Summer
Instructor: Robyn Klein, Department of Plant Sciences & Plant Pathology and MSSE, MSU-Bozeman

A field oriented study of the flowering plants of Montana with an emphasis on plant keying skills. Objectives are 1) to identify the parts of flowering plants and become familiar with botanical terms, 2) to learn morphological characteristics of common plant families, 3) to learn how to use a plant key to successfully identify flowering plants, 4) to apply plant identification skills to the classroom. Discussion will emphasize application of these skills and botanical texts to the classroom.

Textbook: Plant Identification Terminology: An Illustrated Glossary 978-0964-0221-64, Second Edition

 

PSPP 549 Plants, People, and Health
Credits:
2
Mode of Delivery: Campus
Semester Offered: Summer
Instructor: Robyn Klein, Department of Plant Sciences & Plant Pathology and MSSE, MSU-Bozeman

This interdisciplinary course investigates how plants and people intersect, with a focus on the current popular and scientific interest in using plants and their compounds for health and medicine. The subject will be applied to ethnobotany, botany, and phytochemistry. Enhancing the links between the natural world and the classroom can bring meaning to all the science and instill an interest in the investigation of plants and their uses. The course will have the following components:

  1. Application to Ethnobotany: relationships between people, flora, and environment.

  2. Application to Botany: plant defense, co-evolution, chemical communication.

  3. Application to Phytochemistry: plant biosynthetic pathways for secondary compounds and classes of plant compounds.

  4. Application to Chemistry: making herbal products from plant material.

The following book is recommended: James Green, The Herbal Medicine-Maker’s Handbook: A Home ManualClarkson Potter/Ten Speed/Harmony. ISBN-13: 978089594990   

 


To request a course syllabus, please email [email protected]