Generative AI can be used in a myriad of ways to increase your productivity as a teacher for generating ideas for class activities and assignments as well as for creating content for students to support their learning.

Keep in mind that just as you require your students to evaluate outputs for accuracy and bias, you should do the same when using it to create content or activities for teaching.

The prompt is shown in blue and the ChatGPT response is shown in green.


Provide a list of examples for opportunity costs to show college students in an introductory economics course.

RESPONSE: Certainly! Here are some examples of opportunity costs that you can use to illustrate the concept to college students in an introductory economics course:

  1. Attending a Party vs. Studying: The opportunity cost of attending a party on a Friday night might be the lost study time, which could have been used to prepare for an upcoming exam or complete an assignment.
  2. Taking a Part-Time Job vs. Joining a Club: If a student decides to take a part-time job to earn extra money, the opportunity cost could be not being able to join a club or participate in extracurricular activities due to time constraints.
  3. Going on a Vacation vs. Saving for a Car: Choosing to go on a luxurious vacation instead of saving money for a car represents the opportunity cost of forgoing the car in the short term.
  4. Starting a Business vs. Pursuing Higher Education: For an aspiring entrepreneur, the opportunity cost of starting a business immediately after high school may be forgoing the opportunity to pursue a college education and the potential benefits it could provide in the long run.
  5. Buying a Brand-New Item vs. Buying a Used Item: Opting to purchase a brand-new smartphone rather than a used one could mean a higher monetary cost but also an opportunity cost of potentially saving money that could have been used for other purposes.
  6. Working Overtime vs. Spending Time with Family: Choosing to work overtime to earn extra income could come at the expense of spending quality time with family and loved ones.
  7. Investing in Stocks vs. Investing in Real Estate: The opportunity cost of investing in stocks could be missing out on potential returns from investing in real estate, and vice versa.
  8. Choosing a Major: Deciding on a particular major in college involves opportunity costs. For example, selecting one major means forgoing the opportunity to study another field and potentially pursuing a different career path.
  9. Using Student Loan Funds for College vs. Other Investments: Taking out student loans to finance education incurs the opportunity cost of using those funds for other investments, such as starting a business or investing in the stock market.
  10. Watching a Movie vs. Reading a Book: Spending time watching a movie represents the opportunity cost of not using that time to read a book, which could provide knowledge and intellectual stimulation.

These examples should help college students understand the concept of opportunity costs and how they play a role in decision-making.


Create a chart with two different types or rock contact and regional metamorphism and characteristics


Certainly! Here's a chart outlining the two different types of rock metamorphism (contact and regional) and their characteristics:

Metamorphic Type

Contact Metamorphism

Regional Metamorphism


Metamorphism due to heat and pressure from nearby intrusions

Metamorphism due to tectonic forces over a large area

Dominant Agents


Pressure and heat


Near igneous intrusions or magma chambers

Occurs in broad regions like mountain belts or along plate boundaries

Rock Types

Mostly local or surrounding rocks

Rocks of various types and ages

Temperature Range

High (typically 300-800 degrees Celsius)

Varies, but generally lower than contact metamorphism

Pressure Range

Low to moderate pressure

High pressure, often from tectonic compression

Resulting Texture

Fine-grained or non-foliated

Foliated or banded texture is common


Skarns, hornfels

Gneiss, schist, marble

Please note that this chart provides a general overview, and there can be variations and overlap between the two types of metamorphism in specific geological settings.


Create a case study on ethics for an engineering college course. Include questions for students to answer.


Title: Ethical Dilemmas in Engineering: Balancing Innovation and Responsibility

Case Study Scenario:

You are a lead engineer at a prominent technology company specializing in the development of cutting-edge autonomous vehicles. The company has recently designed a self-driving car prototype with advanced artificial intelligence (AI) capabilities. The prototype has undergone rigorous testing and shows immense potential to revolutionize the transportation industry by improving road safety and reducing accidents caused by human error.

However, during the testing phase, a critical ethical dilemma emerges. The AI system of the self-driving car is faced with a no-win situation. It is programmed to prioritize the safety of its occupants and other road users, but in a rare case of unavoidable collision, it must decide between:

Option A: Swerving to avoid a group of pedestrians, putting the car's occupants at risk.

Option B: Maintaining course and potentially hitting the pedestrians, but protecting the car's occupants.

The engineers are tasked with making a decision that aligns with ethical principles, the company's values, and the law. They need to consider the potential consequences, both immediate and long-term, of their choices.

Questions for Students to Answer:

  1. Identify the key ethical dilemma in this case study and explain why it is significant in the field of engineering.
  2. Discuss the potential consequences of Option A (swerving to avoid pedestrians) and Option B (maintaining course and potentially hitting pedestrians) from various perspectives, including the car's occupants, the pedestrians, and the company's reputation.
  3. What ethical principles or frameworks could be applied to analyze and resolve this dilemma? Evaluate the strengths and weaknesses of each approach.
  4. Should the engineers prioritize the safety of the car's occupants or the pedestrians in this scenario? Justify your answer based on ethical reasoning.
  5. How might the engineers modify the AI system to address this ethical dilemma in a more nuanced and responsible manner? Consider technological, legal, and design solutions.
  6. Discuss the potential impact of this decision on the public's perception of autonomous vehicles and the technology industry as a whole. How can engineers and companies mitigate negative consequences and promote trust in their innovations?
  7. Reflect on the responsibilities of engineers in ensuring ethical practices and social responsibility in their work. How can engineering colleges and institutions foster ethical awareness and decision-making skills among future engineers?
  8. Identify any legal, regulatory, or industry guidelines that could provide guidance to engineers facing similar ethical dilemmas in their work. Evaluate their effectiveness in addressing complex ethical challenges.
  9. As an aspiring engineer, how would you personally approach and resolve this ethical dilemma? Explain the factors and considerations that would influence your decision-making process.
  10. What lessons can engineers draw from this case study to integrate ethical considerations into their professional practice and contribute to the development of ethically responsible technologies?

Note: This case study aims to stimulate thoughtful discussion and critical thinking about ethics in engineering. The provided questions encourage students to analyze the ethical implications of technological decisions, consider multiple perspectives, and develop a deeper understanding of the responsibilities and ethical challenges engineers may face in their careers.


Create a lecture outline for Heisenberg's Uncertainty Principle for college students learning about it for the first time.


  1. Introduction to Heisenberg's Uncertainty Principle A. Historical context and Werner Heisenberg's contributions B. Importance and implications of the Uncertainty Principle
  2. Defining the Uncertainty Principle A. Explanation of uncertainty in measurements B. Mathematical formulation of the Uncertainty Principle C. Relationship between position and momentum uncertainties

III. Position-Momentum Uncertainty A. Deriving the position-momentum uncertainty relation B. Understanding the limitations in simultaneously measuring position and momentum C. Examples and thought experiments

  1. Energy-Time Uncertainty A. Understanding energy-time uncertainty relation B. Interpreting the implications of energy and time uncertainties C. Experimental demonstrations and consequences
  2. Mathematical Representation and Operators A. Quantum mechanical operators and their role B. Commutation relations and their significance C. Uncertainty principle in terms of operators
  3. Applications and Consequences A. Significance of the Uncertainty Principle in quantum mechanics B. Role in understanding atomic and subatomic phenomena C. Examples of real-world applications

VII. Beyond the Uncertainty Principle A. Recent developments and extensions B. Challenges and open questions in quantum measurement theory

VIII. Implications and Interpretations A. Different interpretations of the Uncertainty Principle B. Relationship to wave-particle duality and quantum nature

  1. Experimental Verification A. Overview of experiments verifying the Uncertainty Principle B. Notable experiments and their results
  2. Heisenberg's Uncertainty Principle and Everyday Life A. Examples of macroscopic and microscopic uncertainties B. Relevance in technological advancements and scientific research
  3. Criticisms and Debates A. Critiques of the Uncertainty Principle B. Alternative theories and interpretations

XII. Conclusion and Recap A. Summary of key points covered B. Reiterating the significance of Heisenberg's Uncertainty Principle

This lecture outline provides an in-depth exploration of Heisenberg's Uncertainty Principle, starting from its historical background to its applications and consequences. It aims to familiarize college students with the fundamental concept of uncertainty in quantum mechanics and its profound impact on our understanding of the microscopic world.



Explain Heisenberg's Uncertainty Principle for someone with a basic understanding of physics.


Sure! Heisenberg's Uncertainty Principle is a fundamental concept in quantum mechanics. It states that there is a fundamental limit to how precisely we can simultaneously measure certain pairs of physical properties, such as position and momentum, or energy and time.

In simple terms, it means that the more accurately we try to measure one of these pairs, the less accurately we can know the other. This is because at the quantum level, particles like electrons and photons behave more like waves, and their properties become inherently uncertain.

For example, if we try to measure the position of a particle very precisely, the uncertainty principle tells us that its momentum becomes more uncertain. Similarly, if we try to measure the momentum of a particle very precisely, its position becomes more uncertain.

In essence, the uncertainty principle places a fundamental limit on our ability to know certain properties of particles simultaneously. It highlights the inherent probabilistic nature of quantum mechanics and the limitations of precise measurements at the quantum level.



Create a problem solving activity for DNA sequencing in an undergraduate biology college course. Include a rubric for assessing the activity.


Problem Solving Activity: DNA Sequencing Challenge

Objective: The objective of this activity is to engage undergraduate biology students in a problem-solving exercise related to DNA sequencing, where they can apply their knowledge of molecular biology concepts and techniques to analyze and interpret sequencing data.


  1. Divide students into small groups (3-5 members per group) to encourage collaboration and teamwork.
  2. Provide each group with a DNA sequencing dataset consisting of a set of raw sequencing reads in FASTQ format.
  3. Explain that the students' task is to assemble the DNA fragments and reconstruct the original sequence.
  4. Students should utilize appropriate bioinformatics tools and software, such as alignment algorithms and sequence assembly programs, to analyze the data and generate a consensus sequence.
  5. Encourage students to discuss and evaluate different approaches, make informed decisions, and troubleshoot any issues they encounter during the sequencing process.
  6. Once the groups have successfully reconstructed the DNA sequence, they should interpret the results, identify any potential mutations or variations, and draw conclusions about the genetic information encoded in the sequence.

Rubric for Assessing the Activity:

  1. Data Analysis (40%)
    • Accurate utilization of bioinformatics tools and techniques.
    • Effective analysis and interpretation of sequencing data.
    • Clear and logical approach to sequence assembly and consensus generation.
    • Appropriate identification and handling of potential mutations or variations.
  1. Problem Solving and Critical Thinking (30%)
    • Demonstrated ability to identify and evaluate different approaches.
    • Effective troubleshooting and problem-solving during the sequencing process.
    • Sound decision-making in selecting appropriate tools and strategies.
    • Creative and innovative thinking in addressing challenges or limitations.
  1. Collaboration and Communication (20%)
    • Active participation and contribution within the group.
    • Effective communication of ideas, strategies, and findings.
    • Respectful and constructive interaction with group members.
    • Efficient distribution of tasks and coordination of efforts.
  1. Conclusion and Reflection (10%)
    • Clear and concise summary of the reconstructed DNA sequence.
    • Accurate interpretation of the genetic information encoded in the sequence.
    • Reflection on the process, lessons learned, and potential improvements.

Note: The rubric can be adapted and modified based on the specific learning outcomes and expectations of the undergraduate biology course.


Create class discussion questions for the costs and benefits of using renewable energy


  1. What are some of the economic benefits of adopting renewable energy sources, such as solar or wind power, compared to traditional fossil fuels?
  2. Discuss the environmental costs associated with the use of non-renewable energy sources and the potential benefits of transitioning to renewable energy.
  3. How do the costs of implementing renewable energy technologies compare to the long-term benefits they provide? Consider factors such as initial investment, operational expenses, and future savings.
  4. In terms of job creation, what are the potential benefits of investing in renewable energy industries? Are there any challenges or trade-offs in this aspect?
  5. Discuss the impact of renewable energy on energy security and independence for countries. How does it compare to reliance on fossil fuel imports?
  6. What are some of the challenges or limitations of renewable energy sources in terms of their scalability and reliability? How can these challenges be addressed?
  7. Consider the social and health benefits of transitioning to renewable energy. How might improved air quality and reduced pollution impact communities and individuals?
  8. Examine the potential role of government policies and incentives in promoting the adoption of renewable energy. What are some successful examples, and how effective are they in driving change?
  9. Discuss the potential risks and uncertainties associated with investing in renewable energy projects. What factors should be considered to ensure their long-term viability?
  10. Explore the concept of a "just transition" to renewable energy. How can we ensure that the benefits of this transition are equitably distributed across society, including marginalized communities?


Create practice quiz questions with answers for pre-calculus


Sure! Here are some practice quiz questions with answers for pre-calculus:

Question 1: Find the domain of the function f(x) = √(4 - x).

Answer: To find the domain, we need to determine the values of x for which the function is defined. In this case, the square root function is defined only for non-negative real numbers. Therefore, we need to solve the inequality 4 - x ≥ 0. Solving it, we get x ≤ 4. Hence, the domain of the function f(x) = √(4 - x) is (-∞, 4].

Question 2: Solve the equation: log₂(x + 3) = 2.

Answer: To solve the equation, we need to use the definition of logarithms. In this case, we have log₂(x + 3) = 2. Rewriting the equation in exponential form, we get 2² = x + 3. Simplifying, we have 4 = x + 3. Subtracting 3 from both sides, we find x = 1.

Question 3: Find the derivative of the function f(x) = 3x² + 2x - 1.

Answer: To find the derivative of the given function, we need to apply the power rule. Taking the derivative of each term, we have d/dx (3x²) = 6x and d/dx (2x) = 2. The derivative of a constant term (-1) is zero. Therefore, the derivative of f(x) = 3x² + 2x - 1 is f'(x) = 6x + 2.

Question 4: Find the value of sin(π/4).

Answer: Using the unit circle, we know that at π/4 radians, the coordinates of the point on the unit circle are (√2/2, √2/2). Therefore, sin(π/4) = √2/2.

Question 5: Find the value of the limit lim(x → 2) (x² - 4)/(x - 2).

Answer: To find the limit, we can try substituting the value of x directly. However, doing so results in an undefined expression (0/0). We can simplify the expression by factoring the numerator as (x - 2)(x + 2). Canceling the common factor of (x - 2), we are left with the limit lim(x → 2) (x + 2). Substituting x = 2, we find that the limit is 4 + 2 = 6.

These are just a few examples of practice quiz questions for pre-calculus. I hope they help you in your preparation!

More information: